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1 Introduction

We present a new method for estimating Bayesian vector autoregression (VAR) models using priors

from a dynamic stochastic general equilibrium (DSGE) model. In doing so, we contribute to a rich

literature that seeks to combine the theoretical structure of DSGE models with the fit and forecasting

performance of VAR models.

Dynamic stochastic general equilibrium (DSGE) models have become a workhorse for macroeconomic

policy analysis. Part of the attraction of these models is the discipline imposed by a tight theoretical

structure. The structure implies that the properties of the model are determined by a relatively

small number of ‘deep’ parameters, describing the preferences and constraints of optimizing agents.

While the small number of parameters sharpens policy analysis, it also places many restrictions on the

implied time series properties of endogenous variables. So a priori we expect DSGE models to be at

a disadvantage when used to fit the time series properties compared with more densely parameterized

models such as VARs.

This observation prompted the development of a literature exploring the links between DSGE and VAR

representations of the data and seeking to use information from DSGE models to apply some structure

to VAR priors. As we discuss in Section 2, a key contribution to this literature is the DSGE-VAR

methodology proposed by del Negro and Schorfheide (2004, henceforth ‘DNS’). They utilize a mapping

from the linearized DSGE model solution to a VAR representation to build a hierarchical prior. The

researcher specifies a prior for the vector of deep DSGE model parameters. The mapping can then be

used to compute the coefficients of the implicit VAR representation, using the population moments of

the data implied by the DSGE model. This is used as the prior for Bayesian VAR estimation.

The DNS approach can be interpreted in terms of augmenting the data sample with a sample of

artificial observations from the DSGE model. A hyperparameter specifies the size of the sample of

artificial observations relative to the actual data sample. DNS propose that the hyperparameter be

selected to maximize the marginal data density of the VAR.

We also use the moments of the VAR representation of the DSGE model implied by the priors for

the DSGE model parameters. However, in contrast to DNS, we use draws of the DSGE parameter

vector from the prior distribution to characterize the moments of VAR representation. These mo-

ments are used to parameterize an independent Normal-Wishart distribution which forms the prior

for the Bayesian VAR estimation. Using a non-conjugate prior increases the computational demands

of our procedure. However, our approach uses more information from the DSGE model priors. Specif-

ically, the second moments of the VAR priors capture the variance of the VAR coefficients implied by

the priors for the deep DSGE parameters, rather than the variance of the OLS estimators of those

parameters as in DNS.

Two hyper-parameters control the tightness of the DSGE-based priors on the VAR autoregressive

coefficients and the residual covariance matrix respectively. We study cases in which the values of

these hyper-parameters are selected to maximize the marginal data density. We show that this can be

used as a method for isolating subsets of the DSGE parameter for which the priors are substantially

at odds with the data. In particular, the parameters governing the variances of the structural shocks

in the DSGE model have a strong influence on the implied covariance matrix of VAR residuals. If the

relevant hyper-parameter indicates that DSGE prior information on the residual covariance matrix
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should be down weighted, this may indicate that the priors for the parameters related to the structural

shocks are out of line with the data.

We verify this property of our method using a Monte Carlo experiment with data generated by a

variant of the medium-scale DSGE model of Smets and Wouters (2007). We study the case in which

our procedure is applied using misspecified priors for the variance of the structural shocks. We find

that our approach consistently down weights the DSGE-based prior for the VAR residual covariance

matrix. Importantly, the hyper-parameter on the autoregressive VAR parameters is often chosen to

place a relatively large weight on the DSGE-based prior, allowing our approach to selectively use

information from the DSGE parameter priors. This property implies that, in our Monte Carlo study,

our procedure fits better on average than the DNS method. That is because the DNS approach down-

weights all information from the DSGE-based priors, even when priors for only a subset of the model

parameters are substantially at odds with the data.

We also show how our method can be used to uncover estimates of the posterior distributions for

the DSGE model parameters from the posterior distributions of the BVAR parameters. Posterior

distributions from this ‘quasi-Bayesian’ procedure can be compared with the posterior estimates from

Bayesian maximum likelihood estimation of the DSGE model. If the DSGE model estimated using

Bayesian maximum likelihood fits poorly, then such a comparison can provide useful information

about which particular parameters within the DSGE model parameter vector may be contributing to

the poor fit. To illustrate this, we present an empirical application of our approach using US data

and the Smets and Wouters (2007) model. We compare posterior DSGE parameter estimates from

our approach to those obtained using Bayesian maximum likelihood. This comparison indicates some

economically meaningful differences in the implied behavior of the model, including the parameters of

the monetary policy reaction and the response of the model to a monetary policy shock: two topics

of considerable interest to applied macroeconomists. As in our Monte Carlo study, our empirical

application implies that the DSGE-based prior for the residual covariance matrix is at odds with the

data.

The rest of the paper is organized as follows. The existing approaches for constructing priors from

structural models are reviewed in Section 2. Our proposed methodology is described in Section 3.

Section 4 presents a Monte Carlo exercise comparing our method to that of del Negro and Schorfheide

(2004). An empirical application is presented in Section 5 and the final section concludes.

2 Existing literature and our contribution

As noted in the Introduction, there is a rich literature exploring the links between DSGE and VAR

models. A seminal contribution is Ingram and Whiteman (1994), who construct priors for a BVAR

using a simple Real Business Cycle (RBC, King et al., 1988) model. The authors exploit the simplicity

of their model and the properties of the normal distribution to allow posterior estimation of the VAR

implied by the DSGE model using single equation ‘mixed’ estimation procedures introduced by Theil

and Goldberger (1961).

De Jong et al. (1993) built on this approach by assuming that the prior distribution for the VAR pa-

rameters has a conjugate Normal-Wishart distribution, estimating its moments using OLS on stochas-

tically simulated data. Conjugate priors imply that the posterior moments of the VAR parameter
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vector can be written as weighted averages of the prior moments and the OLS estimates. One impli-

cation of the De Jong et al. approach is that if the priors are strongly at odds with the data, then

posterior inference would be damaged since the priors are dogmatically applied in their method.

The work of del Negro and Schorfheide (2004, ’DNS’) provides both a theoretical underpinning for the

De Jong et al. approach and a way to deal with issues arising from imposing priors that are strongly at

odds with the data. As in De Jong et al., the actual data set is augmented with a number of artificial

observations simulated from the DSGE model. The number of artifical observations is proportional

to the size of the actual sample (T ) by a factor λDS ∈ (0,∞). DNS factorize the VAR likelihood of

the augmented sample into the likelihood of the actual data and the likelihood of the artificial data,

with the latter interpreted as the prior density of the VAR parameter vector θ.1 This representation

of the likelihood can be viewed as the posterior kernel of the VAR parameter vector.

DNS show that the posterior distribution of the DSGE parameter vector can be obtained by combining

the marginal likelihood of the VAR (which in their case has an analytic form) with the prior distribution

of the DSGE parameter vector. DNS highlight that the empirical performance of the time-series model

crucially depends on the choice of λDS and, therefore, they recommend that it is selected based on

measures of fit such as the marginal likelihood. The resulting posterior density of the DSGE parameter

vector consists of the parameter values that minimize the distance between the OLS estimated VAR

parameter vector and the VAR parameters implied by the DSGE model. Loosely speaking, this can

be viewed as the Bayesian version of the estimator proposed by Smith (1993).

In our view, the DNS approach suffers from two drawbacks. The first is that the DSGE-based prior

moments are constructed by estimating a VAR(p) on data generated by the DSGE model and using

the moments of the OLS estimators to characterise the priors. This is not in fact the prior distribution

of the VAR parameters, vector but rather the distribution of the OLS estimates of the VAR (computed

under the assumption that the DSGE model is the true data generating process). If the DSGE model,

is the true data generating process then consistency of the OLS estimator ensures that the VAR

estimates converge in probability to the VAR parameters implied by the DSGE model as the pseudo

sample becomes infinitely large. However, the OLS covariance matrix does not measure the dispersion

of the prior probability density function of the VAR parameters implied by the DSGE model: it

measures the variance of the estimation error, which converges to zero as the pseudo sample becomes

infinitely large.

These observations suggest that information captured by the second moments of the prior density of

the DSGE model parameters is not fully utilised. The variance of the priors over the DSGE parameters

reflects the researcher’s confidence over the range of values that the parameter vector may take. It

is likely that the researcher will have tighter priors over some parameters than others. In this case,

some VAR parameters should also receive a larger prior weight than others. In our view, this is an

important piece of information that helps researchers to improve the properties of DSGE models and

so should not be ignored. For instance, the distribution of the VAR impulse responses under the prior

depends on the variance of θ, which under DSGE-based priors should also depend on the variance of

γ.

The second drawback of the DNS approach is that the functional form of the prior covariance matrix

1To avoid the stochastic variation rising by the simulation of the model, the authors replace the non-standardized
sample moments of the likelihood with their expected values.
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strongly restricts the covariances among the VAR coefficients. For instance, it implies that the prior

covariance matrix for each reduced form VAR equation has the same structure (up to a scaling factor)

(see, De Jong et al., 1993; Sims and Zha, 1998). There is no reason to suggest that DSGE models

would in general give rise to VAR representations with this property.

Our approach therefore allows a more complete and more flexible specification of the prior implied

by the DSGE model. The inclusion of two hyperparameters allows our approach to detect possible

sources of misspecification in the DSGE priors.

3 Our Method

Our approach uses the well-known mapping between the DSGE and VAR models together with the

prior distribution of the DSGE parameter vector to derive the prior moments of the VAR parameter

vector.2 We introduce two hyperparameters to ensure well-behaved posterior inference. We also

illustrate how the BVAR posterior moments can be used to obtain the posterior distribution of the

DSGE parameter vector.

We start from the state space representation of the rational expectations solution of a (log) linearized

DSGE model (M), which is given by

yt = A (γ) ξt (3.1)

ξt = B (γ) ξt−1 + Υ (γ)ωt (3.2)

Equation (3.2) describes the evolution of the state vector of the model, ξt ∈ Rdξ, where we use the

notation da to indicate the dimension of the vector a. Equation (3.1) is the measurement equation

mapping the unobserved state of the economy to the observable variables, yt ∈ Rdy. We assume that

the vector of the shocks, ωt ∈ Rdω, is normally distributed with mean zero and identity covariance

matrix. The elements of the matrices A (γ), B (γ), and Υ (γ) are nonlinear functions of the DSGE

parameter vector (the ‘structural parameter vector’), γ ∈ Γ.

The VAR(p) model (T ) of the observable variables y, is:

yt =

p∑
i=1

Ψiyt−i + vt (3.3)

where the vector of the reduced form errors is normally distributed as vt ∼ N (0,Σv). The standard

regression representation of the VAR is:

Y = ΨX + U (3.4)

where Ψ =
[

Ψ1 · · · Ψp

]
is the dy × (p · dy) matrix of the VAR coefficients, T is the sample size,

Y is the dy× T data matrix of the observed variables, X is the (p · dy)× T matrix of the lagged data

and U is the dy × T matrix of the VAR innovations. In what follows, we will define ψ ≡ vec (Ψ)′ and

2This mapping has been explored by many others, including Fernandez-Villaverde et al. (2007), Christiano et al.
(2006) and Ravenna (2007).
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σv ≡ vech(Σv)
′ as the components of the VAR parameter vector θ ≡ (ψ′, σ′v)

′ ∈ Θ.3

We depart from the existing literature by moving away from the assumption of conjugate priors. This

is achieved by assuming that the prior distribution of the VAR parameter vector p (θ) is independent

Normal-Wishart. This slightly complicates the implementation of the approach, but the benefits repay

the additional effort. In particular, p(θ), can be interpreted as the prior distribution of the reduced-

form parameter vector θ(γ). As noted in Section 2, this contrasts with previous approaches (such as

the method of del Negro and Schorfheide (2004)) that proxy this prior using the distribution of the

OLS estimator θ̂ under the assumption that the DSGE model is the true data generating process.

As noted in Section 2, using the distribution of the OLS estimator θ̂ produces some counterintuitive

implications for the prior covariance matrix of θ. Our approach circumvents these difficulties.

3.1 The Prior Moments of θ

The starting point of our methodology is the DSGE model summarised by equations (3.1) and (3.2)

and the prior distribution of the structural parameter vector. From the work of Fernandez-Villaverde

et al. (2007), Christiano et al. (2006) and Ravenna (2007) it is known that when the number of shocks

coincides with the number of the observable variables and the eigenvalues of the matrix4

M (γ) ≡
[
Idξ −Υ (γ) [A (γ) Υ (γ)]−1A (γ)

]
B (γ) (3.5)

are less than one in absolute terms, then there is an analytical mapping between the structural and

VAR parameter vector:5

φ : γ → θ (3.6)

namely,

ψ (γ)i = vec (Ψ (γ)i) (3.7)

Ψ (γ)i ≡ A (γ)B(γ)M (γ)i−1 Υ(γ) [A (γ) Υ (γ)]−1 (3.8)

σv (γ) = vec
(
[A (γ) Υ (γ)] [A (γ) Υ (γ)]′

)
(3.9)

The non-linearity of the mapping and the non-normality of p(γ) implies that the functional form of

p (θ (γ)) does not have a closed-form and it cannot be approximated using either the ‘Mean Value

Theorem’ or the ‘Change of Variable Theorem’ : φ is not an injection (Koop, 2003, pp. 334).6

The analysis proceeds with the assumption that the prior for θ(γ) is the independent Normal-Wishart

distribution and its moments are approximated through stochastic simulation.7 Specifically our prior

3The vec operators transforms a da × da matrix to an da2 × 1 vector by stacking the columns. The vech operator
transforms a da× da matrix to an (da(da+ 1)/2)× 1 vector by stacking the elements of and below the main diagonal.

4We define Ida as the (da× da) identity matrix.
5This condition is known as the Poor Man’s Invertibility Condition (PMIC) (Fernandez-Villaverde et al., 2007). The

mapping between the DSGE and VAR models that we use relies on the PMIC being satisfied. Though the requirement
that the DSGE model satisfy the PMIC reduces the set of models to which our proposed procedure can be applied, this
is also true of alternative approaches.

6See Ingram and Whiteman (1994) for a discussion of the mean value theorem.
7The terminology ‘Normal-Wishart’ to describe our prior comes from the time series econometrics literature which

would often specify regression models in terms of the slope coefficients and ‘precision’ of the errors (the inverse of the
variance of the errors). The Normal-Wishart specification applies to the slope and precision parameters. So in our case,
the prior for the covariance matrix will be inverse Wishart.
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for the VAR parameters are given by:

p (ψ (γ) ,Σv (γ)) = p (ψ (γ)) p (Σv (γ)) (3.10)

p (ψ (γ)) = N (µψ (γ) ,Σλψ (γ)) (3.11)

p (Σv (γ)) = IW
(

Π (γ)−1, η
)

(3.12)

where p (a) denotes the prior distribution of vector a. We use the notation N (µα,Σα) to represent

the normal distribution, where µα and Σα denote the mean and the covariance matrix of the vector

α, respectively. The Wishart distribution and its inverse are defined as W (Π, η) and IW
(
Π−1, η

)
,

respectively, where η is the degrees of freedom and Π is the scale matrix. The matrix Σλψ is described

below.

Using equations (3.5)–(3.9) and draws from p(γ) we are able construct a pseudo set of identically

independently distributed (i.i.d) draws of the reduced-form VAR parameter vector, {θj}Sj=1.8 Then

from Theorem 3.1 and Proposition 3.2 of White (2001) it is known that the estimated moments

converge to the true moments almost surely:

µ̂ψ (γ) ≡ S−1
S∑
j=1

ψ (γ)j
a.s.→ µψ (γ) (3.13)

µ̂σ (γ) ≡ S−1
S∑
j=1

σ (γ)j
a.s.→ µσ (γ) (3.14)

Σ̂ψ (γ) ≡ S−1
S∑
j=1

(
ψ (γ)j − µ̂ψ

)(
ψ (γ)j − µ̂ψ

)′ a.s.→ Σψ (γ) (3.15)

From the properties of the Inverse Wishart distribution (Poirier, 1995) it is known that the scale

matrix Π is related to µσ (γ) through the following relationship:

µσ (γ) =
1

η − dy − 1
vec (Π) or Π (γ) = (η − dy − 1) Π∗ (γ) (3.16)

where vec (Π∗ (γ)) ≡ µσ (γ). In order to study the variance of the prior distribution of Σv we need

work with the properties of the Wishart distribution since Magnus and Neudecker (1979) provide an

analytic expression for the second moment of the Wishart distribution. The mapping between the

Inverse-Wishart and the Wishart distribution is given by Theorem 3.5.5 of Poirier (1995)9

Σσ−1 (γ) ≡ 1

η − dy − 1

(
Idy2 +Kdy,dy

) (
(Π∗ (γ))−1 ⊗ (Π∗ (γ))−1

)
(3.17)

Expressions (3.5)–(3.17) establish the mapping between the moments of p (γ) and p (θ (γ)).

8The steps are described in Appendix B.
9The symbol ⊗ denotes the Kronecker product operator and Kdm,dn is a commutation matrix, such that for any

dm× dn matrix G, Kdm,dnvec(G) = vec(G′).
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3.2 Controlling the tightness of the DSGE priors

The economic assumptions underpinning DSGE models impose many restrictions on the behavior of

the data because the parameter vector γ is typically of relatively low dimension, compared with the

number of parameters in a comparable VAR. Here we explain how these constraints can be relaxed

inside our framework.

Singularity of Σψ (γ)

DSGE models are typically able to describe the behavior of a set of variables using a relative small

number of so-called ‘deep’ parameters, relating to the optimization problems being solved by the

agents in the model. In contrast, VAR models tend to have many more parameters since the lag order

of a VAR is typically chosen to provide a good fit to the observed data.

This implies that the dimension of γ is expected to be (much) smaller than ψ. In turn, this means that

Σψ, the covariance matrix of the VAR parameters implied by the DSGE model, may not be positive

definite. To avoid working with singular distributions, we impose more structure on Σψ, by assuming

that it is a block diagonal matrix.10 Assuming that Σψ is diagonal (similar to Minnesota priors) seems

a natural choice when we are not very confident about the DSGE model’s predictions regarding the

cross-moments between the autoregressive coefficients and so do not wish to impose these restrictions

on the data. Our approach therefore allows us to set a more flexible prior for the covariance matrix

of the autoregressive parameters, ψ, in contrast to the del Negro and Schorfheide (2004) approach

which, as noted in Section 2, forces the prior covariance structure to be identical (up to scale) across

VAR equations.

Hyper-Parameters

The work of De Jong et al. (1993) and del Negro and Schorfheide (2004) suggests that a device that

relaxes the ‘strength’ of the DSGE model priors when they are at odds with the data is desirable to

ensure well-behaved posterior inference.

Note that in the current framework µψ (γ) and µσ (γ) represent the DSGE model’s predictions of the

mean of the VAR coefficient and the residual variance-covariance vector, respectively. Since sample

estimates from the data, µ̂ψ and µ̂σ, are easily computed, we need to ensure that these estimates lie

within the support of the prior distribution implied by the DSGE model. This is possible by adjusting

the variance around µψ (γ) and µσ (γ).

From equation (3.17) it is evident that a suitable choice of the degrees of freedom η allows us to either

‘shrink’ or ‘loosen’ the distribution around µσ−1 (γ).11 However, such a parameter does not exist for

Σψ (γ). We therefore introduce the hyperparameter λ ∈ (0,∞) to define:

Σλψ (γ) ≡ λΣψ (γ) (3.18)

10The length and, consequently, the number of blocks depends on the number of the structural parameters. For
instance, in the application in Section 5, there are twenty five structural parameters and seventy five autoregressive
coefficients, meaning that the minimum number of blocks is three (twenty five parameters length, one for each lag) and
the maximum is seventy five (Σψ is a diagonal matrix).

11Specifically, Σσ−1 (γ)→ 0dy×dy as η →∞ and Σσ−1 (γ)→∞ as η → dy + 1.
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Remark 3.1 below summarises the role of the hyper-parameter vector λ̄ ≡ (λ, 1/η)′ in the posterior

distribution of θ and, consequently, illustrates why its selection should be based on measures of fit.

3.3 VAR Posterior Estimation

Our choice of independent Normal-Wishart priors means that the posterior distribution of θ does not

have an analytic form. However, Proposition 3.1 states that the posterior kernel of the VAR p
(
θ|Y, λ̄

)
can be expressed as the product of two conditional distributions, meaning that it can be approximated

using a Gibbs sampling scheme (Canova, 2005).

Proposition 3.1 If the prior for (ψ,Σv) is specified as in equations (3.10)–(3.12), then the posterior

kernel of θ can be written as the product of two conditional distributions

p
(
θ|Y, λ̄

)
∝ N

(
µ̄ψ, Σ̄ψ|Σv

)
IW

(
Π̄, T + η|Ψ

)
(3.19)

where

Σ̄ψ ≡
[
Σ̂−1
ψ + Σλψ (γ)−1

]−1
(3.20)

µ̄ψ ≡ Σ̄ψ

[
Σλψ (γ)−1 µψ (γ) + Σ̂−1

ψ ψ̂
]

(3.21)

Π̄ ≡ Π (γ) + T Σ̂v +
(

Ψ− Ψ̂
)′
X ′X

(
Ψ− Ψ̂

)
(3.22)

and Σ̂v, Ψ̂, ψ̂ and Σ̂ψ are the OLS estimates of Σv, Ψ, ψ and Σψ, respectively. �

The proof can be found in Appendix A.

The following Remark highlights the role of λ̄ in p
(
θ|Y, λ̄

)
Remark 3.1 From Proposition 3.1 it can be seen that:

1. The posterior mean of the conditional Normal distribution of the VAR coefficient vector is a

weighted average between the prior mean and the OLS estimate

µ̄ψ ≡
[
Σ̂−1
ψ + Σλψ (γ)−1

]−1 [
Σλψ (γ)−1 µψ (γ) + Σ̂−1

ψ ψ̂
]

=
[
Σλψ (γ)−1 + Σ̂−1

ψ

]−1
Σ̂−1
ψ ψ̂ +

[
Σλψ (γ)−1 + Σ̂−1

ψ

]−1
Σλψ (γ)−1 µψ (γ)

=

[
1

λ
Σψ (γ)−1 + Σ̂−1

ψ

]−1

Σ̂−1
ψ ψ̂ + λ

[
Σψ (γ)−1 + λΣ̂−1

ψ

]−1 1

λ
Σψ (γ)−1 µψ (γ)

=

[
1

λ
Σψ (γ)−1 + Σ̂−1

ψ

]−1

Σ̂−1
ψ ψ̂ +

[
Σψ (γ)−1 + λΣ̂−1

ψ

]−1
Σψ (γ)−1 µψ (γ)

From the latter expression it can be concluded that

µ̄ψ → ψ̂ as λ→∞ (3.23)

µ̄ψ → µψ (γ) as λ→ 0 (3.24)
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2. From Theorem A.4.3(b) of Poirier (1995) it is known that

Σ̄ψ ≡
[
Σ̂−1
ψ + Σλψ (γ)−1

]−1
= Σ̂ψ − Σ̂ψ

[
Σ̂ψ + Σλψ (γ)

]−1
Σ̂ψ

= Σ̂ψ − Σ̂ψ

[
Σ̂ψ + λΣψ

]−1
Σ̂ψ (3.25)

Meaning that

Σ̄ψ (γ) → Σ̂ψ as λ→∞ (3.26)

Σ̄ψ (γ) → 0dψ×dψ as λ→ 0 (3.27)

3. From the properties of the inverse Wishart distribution is know that the posterior mean of Σv is

(Poirier, 1995)

µ̄σ =
η − dy − 1

T + η − dy − 1
µσ (γ) +

T

T + η − dy − 1
vec

(
Σ̂v

)
+

1

T + η − dy − 1
vec

[(
Ψ− Ψ̂

)′
X ′X

(
Ψ− Ψ̂

)]
This implies that

µ̄σ → vec
(

Σ̂v

)
as η − dy − 1→ 0 and λ→∞ (3.28)

µ̄σ → µσ (γ) as η →∞ (3.29)

4. From Magnus and Neudecker (1979) and Theorem 3.5.5 of Poirier (1995) it is known that

vec (Σσ−1) = (T + η − dy − 1)
(
Idy2 +Kdy,dy

) (
Π̄−1 ⊗ Π̄−1

)
= (T + η − dy − 1)

(
Idy2 +Kdy,dy

)
[
(η − dy − 1) Π∗ + T Σ̂v +

(
Ψ− Ψ̂

)′
X ′X

(
Ψ− Ψ̂

)]−1

⊗
[
(η − dy − 1) Π∗ + T Σ̂v +

(
Ψ− Ψ̂

)′
X ′X

(
Ψ− Ψ̂

)]−1


It can be seen that

vec (Σσ−1) → 1

T

(
Idy2 +Kdy,dy

) (
Σ̂−1
v ⊗ Σ̂−1

v

)
as η → dy + 1 and λ→∞ (3.30)

vec (Σσ−1) → 0dσ×dσ as η →∞ (3.31)

�

Estimation & Interpretation of λ̄

The previous section clearly shows that λ̄ affects the fit of the VAR. To guard against worsening

empirical performance, the data can be used to guide our choice of this hyperparameter vector. This

approach mirrors the suggestion of del Negro and Schorfheide (2004), to select the value of the hyper-

parameter in their DSGE-VAR approach based on model fit.
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A natural measure for this purpose is the marginal likelihood of the VAR, defined as:

mT (Y ) ≡
∫
LT (Y |θ) p (θ) dθ

where LT (Y |θ) is the likelihood of the VAR. In this case ̂̄λ should be be determined as:

̂̄λ = arg max
λ̄∈(0,∞)×(dy+1,∞)

mT
(
Y |λ̄

)
(3.32)

In our framework mT
(
Y |λ̄

)
does not have an analytic form. However, it can be approximated by

the output of the Gibbs sampler using either the methodology developed by Chib (1995) or Geweke’s

modified harmonic mean estimator (Geweke, 1999).12

This estimation procedure implies that ̂̄λ can be interpreted as an indicator of model misspecification.

If the DSGE model used to derive the prior of θ is ‘far away’ from the true data generation process,

then ̂̄λ is expected to be large, implying that ̂̄λ is an increasing function of model misspecification.

Another useful by-product of estimation of ̂̄λ is that we are now able to identify which parts of the VAR

parameter vector (ψ and/or σ) are best (or worst) summarised by the DSGE model. The curvature

of mT
(
Y |λ̄

)
surface with respect to λ and η identifies whether small changes in these arguments lead

to large variations in the fit of the VAR, as measured by mT
(
Y |λ̄

)
.

3.4 Using quasi-Bayesian estimation to pinpoint misspecification

We argued in the previous section that ̂̄λ can be thought of as an indicator of model misspecification.

In this section, we show how a form of quasi-Bayesian estimation can be useful in further examining

the misspecification of the DSGE model. In the following subsections, we first present the estimation

approach and then describe how this can be used for model evaluation exercises.

3.4.1 Quasi-Bayesian estimation of γ

Our quasi-Bayesian estimator is a limited information estimator.13 The studies of del Negro and

Schorfheide (2004) and Christiano et al. (2010) can be viewed as attempts to incorporate an approach

to selecting structural parameters based on limited information metrics within the Bayesian framework.

Our approach takes a similar perspective and illustrates how the structural parameters can be selected

to minimize the distance between the posterior moments of the BVAR parameters estimated using

the approach described in Section 3.3 and the VAR parameters implied by the DSGE model.

From del Negro and Schorfheide (2004, Section 3.3.1), we know that the posterior distribution of γ

can be obtained by combining the marginal likelihood of the VAR with the prior distribution of the

structural parameter vector. However, in our case mT

(
Y |γ, θ̂, ̂̄λ) does not have an analytic form.

This difficulty is surmounted by using the Laplace approximation and the mapping (3.6).

12In practice, the researcher can create a two dimensional grid ((0,∞) × (dy + 1,∞)) and evaluate mT
(
Y |λ̄

)
for all

values of λ̄ inside this grid, setting ̂̄λ equal to the λ̄ that corresponds to mT
(
Y |λ̄

)
with the highest value.

13The theory regarding this type of estimator is developed in a series of papers by Kwan (1999), Kim (2002) and
Chernozhukov and Hong (2003).
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To see this, suppose that the likelihood is close to symmetric and highly peaked around the mode, θ∗,

given by

θ∗ = arg maxLT (Y |θ) p
(
ψ|γ, ̂̄λ) p(σv|γ, ̂̄λ) (3.33)

Then mT

(
Y |γ, θ̂, ̂̄λ) can be approximated by14

mT

(
Y |θ∗, ̂̄λ) = (2π)dθ

∣∣∣−∇2
θ log p

(
θ∗|Y, ̂̄λ)∣∣∣− 1

2

exp

[
1

2
(θ − θ∗)′∇2

θ log p
(
θ∗|Y, ̂̄λ) (θ − θ∗)

]
(3.34)

(see, Canova, 2005, Chapter 9). At this point we apply the same assumption adopted by del Negro

and Schorfheide and we replace θ by θ (γ) , namely

mT

(
Y |θ∗, ̂̄λ) = (2π)dθ

∣∣∣−∇2
θ log p

(
θ∗|Y, ̂̄λ)∣∣∣− 1

2

exp

[
1

2
(θ (γ)− θ∗)′∇2

θ log p
(
θ∗|Y, ̂̄λ) (θ (γ)− θ∗)

]
(3.35)

Consequently, in our approach, we have

p
(
γ|Y, θ∗, ̂̄λ) ∝ mT (Y |θ∗, ̂̄λ) p (γ) (3.36)

and the posterior distribution of γ can be constructed using the random walk Metropolis-Hastings

Markov Chain Monte Carlo algorithm.

Intuitively, we can think of (3.36) as the set of γ values that minimize the distance between the

posterior mode of the VAR parameter vector estimated in the data and the one implied by the model.

The difference between this estimator and the one discussed in del Negro and Schorfheide (2004) is

the set of instruments for the estimation of γ. In our case it is the posterior mode of θ, while del

Negro and Schorfheide use the OLS estimate.

If the DSGE model estimated using Bayesian maximum likelihood fits poorly, then it may be useful

to compare the quasi-Bayesian estimate of γ with the posterior estimate of γ from Bayesian maximum

likelihood. This can provide useful information about which particular parameters within the γ vector

may be contributing to the poor fit of the DSGE model. We do this as part of our empirical application

in Section 5.2.15

14We use ∇af (a) and ∇2
af (a) to represent the matrices of the first and second derivatives of the vector function f (a)

with respect to the vector a, respectively.
15Of course, by definition, limited information methods do not include all information relevant for estimation. For

example, Canova and Sala (2009) argue that full information techniques deliver more accurate inference than limited
information methods since the likelihood of the model conveys substantially more information than the limited informa-
tion objective function, which aids the identification of the true parameter vector. However, Iskrev (2010) suggests that
many DSGE models may suffer from identification problems, even when full information methods are used. Theodoridis
(2011) illustrates that when a sufficient number of instruments, which fully summarize the likelihood of the model under
normality, and the optimal weighting matrix are used then, in small samples, limited information estimation techniques
outperform even Bayesian full information procedures with excessively tight priors around the true parameter vector.
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3.4.2 DSGE Evaluation

We first note that the term inside the square brackets of (3.35)

W ≡ (θ (γ)− θ∗)′∇2
θ log p

(
θ∗|Y, ̂̄λ) (θ (γ)− θ∗) (3.37)

is a norm that assesses the plausibility of the DSGE model relative to the estimated VAR. To see

this notice that under the extreme assumption that the structural model is the true data generating

process and – for simplicity – the posterior mode is equal to the posterior mean then the expected

difference between θ (γ) and θ∗ should be equal to zero

Eγ (θ (γ)− θ∗) =

∫
(θ (γ)− θ∗) p

(
γ|Y, θ∗, ̂̄λ) dγ

=

∫
θ (γ) p

(
γ|Y, θ∗, ̂̄λ) dγ − θ∗ = 0dθ×1 (3.38)

Alternatively, if the model is heavily misspecified then Eγ (θ (γ)− θ∗) will be large.

Under quadratic preferences, the following expressions

EγW =

∫
Wp

(
γ|Y, θ∗, ̂̄λ) dγ (3.39)

Eγ (W−EγW)2 =

∫
(W−EγW)2 p

(
γ|Y, θ∗, ̂̄λ) dγ (3.40)

can be interpreted as the expected loss and risk of using M, respectively (Canova, 2005; Schorfheide,

2000). Furthermore, the overlap between the posterior distribution ofW and the posterior distribution

of W∗

W∗ ≡ (θ − θ∗)′∇2
θ log p

(
θ∗|Y, ̂̄λ) (θ − θ∗) (3.41)

which is obtained by the posterior estimation of the VAR, provides a more complete measure of the

misspecification of the structural model.

4 Monte Carlo experiments

In this section, we present Monte Carlo experiments to illustrate two aspects of our approach.In Section

4.2, we conduct a Monte Carlo investigation of the quasi-Bayesian estimator described in Section 3.4.1.

In Section 4.3 we demonstrate how our estimation methodology detects priors about DSGE model

shock variances that are at odds with the data. Before doing so, we briefly describe the DSGE model

in Section 4.1.

4.1 The DSGE model

We use a version of the model developed by Smets and Wouters (2007) with two simplifications: we

use a smaller number of shocks (specifically we abstract from mark-up shocks); and we use a simpler

specification of the reaction function for monetary policy.
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As the model is well known, our description is brief.16 All variables are expressed as log deviations

from their steady-state values, Et denotes the rational expectation formed at time t, the steady-state

value of a variable (e.g., yt) is denoted with an over-bar (ȳ) and all shocks (ωit) are assumed to be

normally distributed with zero mean and unit standard deviation.

The expenditure components are consumption (ct), investment (it), capital utilisation (zt) and govern-

ment spending εgt = ρgε
g
t−1 + σgω

g
t , which is assumed to be exogenous. The market clearing condition

is given by

yt = cyct + iyit + zyzt + εgt (4.1)

where yt denotes total output. The consumption Euler equation is given by

ct =
λ

1 + λ
ct−1 +

1

1 + λ
Etct+1 +

(1− σC)
(
W̄ hL̄|C̄

)
σC (1 + λ)

(Etlt+1 − lt)

− 1− λ
σC (1 + λ)

(
rt − Etπt+1 + εbt

)
(4.2)

where lt is the hours worked, rt is the nominal interest rate, πt is the rate of inflation and εbt =

ρgε
b
t−1 + σgω

b
t is a risk premium process. In the absence of habit formation (λ = 0), equation (4.2)

reduces to the standard forward looking consumption Euler equation. The linearised investment

equation is given by

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

(1 + β)S′′
qt + εit (4.3)

where it denotes the investment and qt is the real value of existing capital stock (Tobin’s Q). The

sensitivity of investment to real value of the existing capital stock depends on the parameter S′′ (see,

Christiano et al., 2005). The corresponding arbitrage equation for the value of capital is given by

qt = β (1− δ)Etqt+1 + (1− β (1− δ))Etrkt+1 −
(
rt − Etπt+1 + εbt

)
(4.4)

where rkt = − (kt − lt) + wt denotes the real rental rate of capital which is negatively related to the

capital-labour ratio and positively to the real wage.

On the supply side of the model, the aggregate production function is defined as

yt = φp (αkst + (1− α) lt + εat ) (4.5)

where kst represents capital services which is a linear function of lagged installed capital (kt−1) and the

degree of capital utilisation, zt (so kst = kt−1 + zt). Cost minimization implies that capital utilization

is proportional to the real rental rate of capital, zt = 1−ψ
ψ rkt . Total factor productivity follows an

AR(1) process, εat = ρgε
a
t−1 + σgω

a
t . The accumulation process of installed capital is

kt = (1− δ) kt−1 + δit + (1 + β) δS′′εit (4.6)

where the investment shock, εit = ρiε
i
t−1 + σiω

i
t, increases the stock of capital in the economy exoge-

nously. Monopolistic competition within the production sector and Calvo-pricing constraints gives the

16Readers interested in the microfoundations of the model are recommended to consult the original paper.

13



following New-Keynesian Phillips curve for inflation (π)

πt =
ip

1 + βip
πt−1 +

β

1 + βip
Etπt+1 +

1

(1 + βip)

(1− βξp) (1− ξp)
(ξp ((φp − 1) εp + 1))

mct (4.7)

where mct = αrkt + (1− a)wt −εat is the marginal cost of production. Monopolistic competition in

the labour market also gives rise to a similar New-Keynesian Phillips curve for wages

wt =
1

1 + β
wt−1 +

β

1 + β
(Etwt+1 + Etπt+1)− 1 + βiw

1 + β
πt +

iw
1 + β

πt−1

+
1

1 + β

(1− βξw) (1− ξw)

(ξw ((φw − 1) εw + 1))
µwt (4.8)

where µwt =
(
σllt + 1

1−λ (ct − λct−1)
)
− wt is the households’ marginal benefit of supplying an extra

unit of labour service. Lags of inflation appear in both (4.7) and (4.8) because price and wage setters

that do not receive the Calvo signal to reset their price or wage may index it to inflation in the previous

period. The extent of indexation for prices and wages respectively are captured by the parameters ip

and iw.

Finally, the monetary policy maker is assumed to set the nominal interest rate (r) according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ) (rππt + ryyt) + εrt (4.9)

where εrt = ρrε
r
t−1+σrω

r
t is the monetary policy shock. Our version of the monetary policy rule specifies

that the policymaker responds to detrended output rather than the output gap. This modification to

Smets and Wouters (2007) means that we do not have to augment the model with a block of equations

that determine the flexible price allocations in the model (and hence the output gap). This reduces

the size of the model which reduces the computational burden somewhat.

4.2 The quasi-Bayesian estimator

In this section we present a small simulation exercise to investigate the performance of the DSGE

Quasi-Bayesian (QB) estimator proposed in Section 3.4.1 against the standard full information Bayesian

maximum likelihood approach (BML). The data generating process is the model described in Section

4.1 and it is assumed that only output, consumption, investment, inflation and nominal interest rates

(yt, ct, it, πt and rt, respectively) are observed.

The details of the Monte Carlo steps are described in Appendix C, though we highlight one particular

aspect. One critique of our suggested approach could be that the minimization required to obtain θ∗

and ∇2
θ log p

(
θ∗|Y, ̂̄λ) will typically be very computationally expensive. For that reason, we replace

this step by the estimation of the VAR model, and the use of the posterior mean and the variance-

covariance matrix of p
(
θ|Y, ̂̄λ) instead of θ∗ and∇2

θ log p
(
θ∗|Y, ̂̄λ), respectively. It is common practice

for applied researchers to approximate these quantities from the output of the posterior simulation

to reduce the computational burden (Koop and Poirier, 1993). We have verified that results using

θ∗ and ∇2
θ log p

(
θ∗|Y, ̂̄λ) are almost identical, but we present results based on the approximation to

demonstrate that a less computationally demanding variant of our approach performs well.

Before turning to the discussion of the results, it should be highlighted that the purpose of this
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experiment is not to fully characterize the small-sample properties of the proposed estimator, for

which a more substantial exercise would be required. Instead, we aim to assess whether the estimator

described in Section 3.4.1 behaves reasonably in small samples and we choose the Bayesian maximum

likelihood estimator as the benchmark case to assess this.

Table 1 provides description of the estimated parameters and their prior distributions used in the

Monte Carlo exercise. The prior moments (mean and standard deviation) of the structural parameter

vector are presented in the first two columns of Table 3. The next three columns display the me-

dian (calculated using the Mahanalobis metric17), the standard deviation and the bias for the BML

estimator based on 1000 replications. The remaining columns capture the same information for the

quasi-Bayesian estimator.

The results reveal that the quasi-Bayesian estimator performs better than the BML estimator not only

in terms of bias but also in terms of efficiency. It is not surprising that our limited information estimator

is less biased than the full information estimator in small samples (Ruge-Murcia, 2007; Theodoridis,

2011). However, it seems striking that the QB estimator also appears to be more efficient than the

BML estimator. This result can be rationalized by appealing to the asymptotic theory of minimum

distance estimators (Newey and McFadden, 1986). From (3.35) and (3.36) we see that the posterior

distribution of the structural parameter vector consists of the values of γ that minimise the distance

between θ(γ) and θ∗. In other words, θ∗ can be interpreted as the set of the instruments used in this

estimation and −∇2
θ log p

(
θ∗|Y, ̂̄λ)−1

is its covariance matrix. Loosely speaking, p
(
γ|Y, θ∗, ̂̄λ) can be

viewed as the distribution of an efficient estimator, a property exhibited by the limited information

estimator but not the full information estimator. Clearly this property does not hold asymptotically

where the BML is unambiguously more efficient than the QB estimator.

4.3 Identifying DSGE model misspecification

We construct a simple Monte Carlo experiment to demonstrate how our estimation methodology may

provide information about the source of the DSGE model misspecification. As before, we simulate

observations from the DSGE model described in Section 4.1. We then examine the performance of

VARs based on incorrect DSGE priors.

In each replication, we draw DSGE model parameters γ from the prior distributions detailed in Table 1

and the first two columns of Table 3. We solve the model and generate a sample of 10000 observations,

keeping only the final 200 observations as our synthetic sample. We then estimate VARs based on

incorrect priors for the DSGE model parameters.18 The incorrect priors are for the five elements of

γ that correspond to the standard deviations of the structural shocks: {σi, σg, σa, σb, σr}. For these

parameters we assume a prior that is double the true values of the parameters drawn in that iteration.

The remaining twenty elements of γ are set equal to the values drawn in that iteration.

The incorrect DSGE priors are used to estimate VARs using the DSGE-VAR methodology of del Negro

and Schorfheide (2004) and our proposed approach. The hyper-parameters controlling the weight on

17The Mahanalobis distance has also been used by Jorda et al. (2010) to construct simultaneous confidence regions for
forecast paths and by Minford et al. (2009) for DSGE model validation.

18This is in contrast to the Monte Carlo exercise in Section 4.2, which is intended to explore the performance of the
estimation approach when the correct priors are used.
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the DSGE model priors (respectively λ̄ and λDS) are chosen to maximise the marginal likelihood.19

Our goal is to examine how the misspecified DSGE priors affect the values of the hyperparameters

and the consequent effects on inference.

We find that our methodology successfully identifies that the misspecification of the DSGE model

priors is primarily manifest in the prior variance of the VAR residuals, Σv. This is evident in the fact

that the estimation procedure selects the lowest value for the degrees of freedom η−dy−1 available in

our grid in all replications. So our estimation procedure places very little weight on the DSGE prior

for the VAR covariance matrix.

In contrast, λ, the hyperparameter controlling the tightness of the prior of the VAR coefficients ψ has

a non-degenerate distribution. The mean value for λ is around 0.37. This implies that our procedure

recognises the usefulness of the DSGE prior information for ψ and, on average, recommends that the

econometrician shrink her estimate of the prior variance for ψ by around 60%.

When we repeat this exercise using the DSGE-VAR approach of del Negro and Schorfheide (2004),

we find that the mean value for λDS is close to the mean value of λ for our approach. However,

this similarity masks some differences in the distribution of the hyperparameters λ and λDS . This is

illustrated in Table 5, which records the number of observations of λ and λDS for each of the grid

points considered. We observe that the modal value for the hyperparameter λ is 0.2 (the lowest value

in the grid) whereas the modal value for λDS is 0.35. However, the distribution of λ across the Monte

Carlo replications has a heavy right tail, putting a weight of 1 or more on the DSGE model priors in

5% of the replications. In contrast, the λDS puts a weight of 1 or more on the DSGE priors in just 2

of the 1000 replications. This observation suggests that, by consistently placing a low weight on the

implications of the misspecified DSGE priors for the VAR covariance matrix (by selecting a low η in

all cases), our approach is free to place more weight on the VAR coefficient parameters ψ when it is

appropriate to do so.

Figure 9 plots the estimated density of marginal likelihood values across Monte Carlo replications

obtained from our approach (FHT) and the DSGE-VAR (DNS). We observe that the DSGE-VAR

tends to fit less well (based on this measure of fit) than our proposed estimator. There are two

possible explanations for this result.

First, it may be the case that our approach fits better precisely because it puts less weight on the

DSGE priors when those priors are misspecified. That is, the improvement in fit may be driven by

those instances in which λ = 0.2, so that little weight is being placed on the DSGE priors. Figure 10

illustrates that this is not in fact the case. The Figure shows the joint distribution of {λ, λDS} across

the 1000 experiments. Each {λ, λDS} pair is represented by a circle, the area of which is proportional

to the number of observations in the set of experiments. The color of the circle indicates the mean

difference in marginal likelihood for those observations: a higher number indicates that our approach

fits better than the DSGE-VAR. We observe that our approach produces better fit in almost all cases

and that the extent of the improvement in average fit is not driven entirely by cases in which our

approach heavily down-weights the DSGE priors (that is, for low values of λ).

The second reason that our approach might be expected to dominate is that we have an additional

19We follow del Negro and Schorfheide (2004) and evaluate the marginal likelihood for a grid of hyperparameters,
selecting the element of the grid with the highest marginal likelihood. The grid for λDS is the same used by del Negro
and Schorfheide (2004): {0.2, 0.35, 0.5, 0.7, 1, 1.25, 1.5, 2, 2.5, 5}. We use the same grid for λ. The grid for η − dy − 1 is
{0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
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hyperparameter (η). Indeed, the purpose of the experiment in this section is to illustrate that the

additional flexibility afforded by the additional hyperparameter could be particularly valuable when

there is relatively localised misspecification of the DSGE model priors.

5 Empirical application

In this section we present an empirical application of our method and compare it to other approaches.

Before doing so, we describe the data that we use and the priors for the DSGE model.

We use the data set for the United States constructed by Smets and Wouters (2007).20 The model

is estimated using data between 1966Q1 and 2004Q4. We fit the model to five time series: output,

consumption, investment, the Fed funds rate and inflation.21 The estimation sample is 1966Q1–

1999Q4, with the period 2000Q1–2004Q4 used to evaluate out of sample forecasting performance.

We use the simplified version of the Smets and Wouters (2007) model, described in Section 4.1. The

five shocks that drive the DSGE model are: a shock to consumer preferences, a shock to investment

adjustment costs, a productivity shock, a monetary policy shock and a government spending shock.

The shape of the prior distribution is given in Table 1, while the prior moments can be found in Table

4.

5.1 Selection of hyperparameters

In our approach, the posterior BVAR parameter estimates are weighted averages between the DSGE-

based prior moments and the OLS estimates, with the weights controlled by the hyperparameter vector

λ̄ = (λ, 1/η)′. The hyperparameter vector needs to be decided before the estimation and we use the

marginal likelihood to select the value that maximizes the fit of the BVAR.22

The relationship between the hyperparameter vector λ̄ and the marginal likelihood of the VAR is

shown in Figure 1. We observe an incompatibility between the DSGE-based priors and the data, since

the marginal likelihood is maximized for a large value of λ and a small value of η. However, we are

able to identify which part of the VAR parameter vector implied by the DSGE-based priors disagrees

most with the data. The significant steepness of the surface with respect to small values of η indicates

that small changes to the degrees of freedom parameter lead to substantial changes in the fit of the

model, while the surface is relatively flat with respect to λ and large values of η. This suggests that

the prior mean of the residual variance-covariance matrix is at odds with the data.

5.2 Assessing misspecification using quasi-Bayesian estimation

In this section, we use the quasi-Bayesian (‘QB’) estimator described in Section 3.4.1, to uncover

posterior estimates for the DSGE parameter vector, γ, based on our BVAR posterior parameter

20This data set is publicly available from the website of the American Economic Association.
21We use the Hodrick-Prescott filter to eliminate the zero frequency component of the non-stationary series (real

output, real consumption and real investment).
22This process is computationally demanding since it requires the discretization of the interval where λ̄ is defined to

specify a grid of {η, λ} pairs and posterior estimation of the BVAR model for each grid point.
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estimates. We compare these estimates with those generated by full information Bayesian maximum

likelihood (‘BML’) to investigate potential areas of misspecification in the DSGE model.

To provide an ‘eyeball’ assessment of fit, Figure 7 plots the Kalman filter estimates of the observed

series of the two estimators against the data (black solid line), which can be regarded as the one-step-

ahead within sample forecasts.23 The in-sample fit of the structural model using the full information

BML estimator (dashed red line) seems very good, though the QB estimator (dotted-dashed blue line)

seems to fit marginally better.

Under the assumption that the BVAR model estimated using our approach is a good description of the

data generating process, then the metric discussed in Section 3.4.2 can be used to assess plausibility

the restrictions imposed by the BML and QB models on the data. Table 2 displays the EγW and√
Eγ (W−EγW)2 moments indicating that the expected loss and risk of using the BML instead of the

QB model is substantial. Since the latter model is estimated by selecting the structural parameter

vector to minimize the distance between the VAR parameter vector implied by the DSGE model and

the VAR parameter estimated from the data, this is unsurprising.

The posterior distributions of BML-W (red dashed line) and QB-W (blue dashed-dotted line) are

plotted against the posterior distribution ofW∗ in Figure 4. While the BML model appears to be well

estimated, its VAR predictions seem to be very different from those observed in the data. The picture

looks better for the QB model, though even in this case the overlap between the posterior distribution

of QB-W and W∗ is almost zero. Our interpretation of this result is that model’s restrictions on the

properties of the data are quite severe, even when γ has been selected to give the best chance to the

DSGE model of reproducing the estimated VAR dynamics. Again this may be unsurprising since the

VAR model has ninety well-estimated parameters and the DSGE only twenty five.

We can investigate which elements of the DSGE model structure may be placing the harshest restric-

tions on the behavior of the data, by examining the estimation results in more detail. The posterior

distribution of the DSGE model parameters generated by the BML and QB estimators are plotted

with the prior distributions in Figure 5. Table 4 provides summary statistics. The posterior variance

for most of the QB estimates (eighteen out of twenty five) is smaller than the posterior variance of

the BML estimates. This result is consistent with the Monte Carlo evidence presented in Section 4.2.

In terms of an economic interpretation, marginal cost variations have a smaller impact on current

inflation in the QB case (0.079), compared to the BML estimate (0.243). Additionally, the labor

supply curve responds less to wage and consumption movements in the QB case. The effect of the

expected growth of hours worked on consumption in the Euler equation (4.2) is much smaller in the

QB variant (0.079 versus 0.188 in the BML case). The response of monetary policy to inflation is

larger in the QB case.

In general, the posterior estimates of the standard deviations of the structural shocks are smaller in the

QB case (an exception being the monetary policy shock). The overlap of the posterior distributions

of the persistence parameters of the risk premium, government spending and interest rate shocks is

quite small. The fact that the BML and QB methods generate somewhat different estimates of the

shock process parameters is consistent with the finding that the prior mean of the residual variance-

23The prediction errors are computed for models solved using parameter values equal to the estimated modes of the
posterior densities in each case.
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covariance matrix of the VAR is at odds with the data, as demonstrated in Section 5.1.24

The parameter differences we have documented generate different economic behavior, as can been seen

from the impulse response function (IRF) comparison in Figure 6. For instance, in the QB case, a

smaller and less persistent government spending shock crowds out less consumption and investment

than in the BML case. The difference in consumption responses leads to different profiles for real

wages (in the BML case, agents supply more labor pushing wages down) and, consequently, different

profiles for marginal cost, inflation and interest rates.

Another example is the investment shock: a similar perturbation leads to a smaller rise in investment

and, consequently, to a lower capital stock for the QB case. In the BML variant, the fall in the

rental rate of capital exceeds the increases in the wages (due to higher labor demand) keeping the

marginal cost below base from the fourth period after the shock. However, this does not happen in the

QB variant, where marginal cost stays above base for the entire duration of the shock, with obvious

implications for inflation and the interest rate.

The alternative estimation approaches deliver somewhat different impulse responses to a monetary

policy shock, which is often the focus of interest in monetary DSGE models (see, Christiano et al.,

2005). The higher estimated price stickiness in the QB variant gives rise to more persistent responses,

despite the fact that the degree of interest rate smoothing in the Taylor rule is estimated to be smaller

than the BML variant.

Figure 8 computes the contribution of each shock to the variance of the h-period-ahead forecast error

of the observable vector (h = ∞ captures the long-run effect). Although both decompositions look

very similar, we note that the QB estimator assigns more importance to the monetary policy shock

and reduces the effects of the productivity disturbance to all series except the nominal interest rate.

This is consistent with the flatter QB Philips curve – inflation is mainly driven by productivity shocks

– and the higher inflation weight in the QB Taylor rule. The contribution of the government spending

shock to fluctuations in consumption and investment is small in the BML case, but its contribution

is almost zero in the QB variant, in which consumption and investment are driven primarily by the

risk premium and investment shock, respectively. Taken together with the comparison of impulse

responses, we conclude that the alternative estimation approaches give rise to parameter estimates

that have economically significant implications in some cases.

6 Conclusion

We have developed a new method for estimating BVAR models using priors from DSGE model. Our

method uses the DSGE model priors to determine the moments of an independent Normal-Wishart

prior for the VAR parameters. Two hyper-parameters control the tightness of the DSGE-implied

priors on the autoregressive coefficients and the residual covariance matrix respectively. Compared

with existing approaches, our method makes more use of the information about the second moments

of the VAR parameters contained in the DSGE parameter priors. The hyper-parameters provide a

device for the researcher to detect subsets of DSGE parameter priors that are particularly at odds

24Of course Σv is a function of all structural parameters, though the parameters governing the variability and persis-
tence of the shock processes have a particularly important influence. From equation (3.2) we observe that the parameters
controlling the variance of the structural shocks will enter the matrix Υ. From equation (3.9) we see that Σv = [AΥ] [AΥ]′.
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with the data.

We have also shown how our method can be used to uncover the posterior density of the DSGE

parameter vector from the posterior estimates of the VAR parameters. This new quasi-Bayesian

estimator can also be used to assess instances in which the DSGE prior is at odds with the data. In

particular, a comparison of the posterior estimates from our quasi-Bayesian approach with those from

Bayesian maximum likelihood may provide useful information about specific parameter priors that

are at odds with the data. We have illustrated the strengths of our approach using both Monte Carlo

examples and an empirical exercise using US data.
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A Proofs

Proof: of Proposition 3.1

p
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θ|Y, θ̂, γ, λ̄

)
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)
ψ
] }

= |Σλψ (γ)|−0.5dψ |Π (γ)|0.5η |Σv|−0.5(T+η+dy+1) exp
{
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v Π (γ)
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Similar to Canova (2005, Chapter 10, page: 354) we let Y ≡
[

Σλψ (γ)−0.5 µψ (γ)
(
Σ−0.5
v ⊗ IT

)
y
]′

and X ≡
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, then (A.1) becomes
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by setting
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and
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(
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)−1
=
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ψ
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(A.4)

(A.2) reduces to

p (θ|Yt, λ, p (γ)) ∝ |Σλψ (γ)|−0.5dψ |Π (γ)|0.5η |Σv|−0.5(η+dy+1) exp
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From (A.5), it can be seen that conditioning on Σv,

p
(
ψ|Σ−1
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)
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∣∣−0.5dψ
exp
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ψ (ψ − µ̄ψ)
}

(A.6)

meaning that ψ is normally distributed with mean and variance equal to µ̄ψ and Σ̄ψ, respectively.

Alternatively, equation (A.1) can also be written as
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which, conditional on ψ, is the the Wishart distribution with Π (γ) + T Σ̂v +
(
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scale matrix and T + η degrees of freedom. �
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B θ Draws

This Appendix explains how the draws of θ are produced

1. Draw γj from p (γ) and solve the DSGE model

2. If γj satisfies Blanchard and Kahn’s conditions (Blanchard and Kahn, 1980) calculate the M

matrix (3.5) else go to step 1

3. If the eigenvalues of M are less than one in absolute terms calculate ψj and σj using equations

(3.7)–(3.9)) else go to step 1

4. Repeat steps 1 to 3 S times

C Implementation of Monte Carlo assessment of QB estimator

This Appendix describes the steps required to produce Table 3.

1. The draws described in Appendix B are used to construct the prior moments of θ (3.5)–(3.9)

2. A sample of 200 observations is generated by the model described in Section 4.1 based on the

prior moments of γ given by Table 3 for yt, ct, it, πt and rt

3. A BVAR with 3 lags is fitted to this data.

4. The posterior median and variance-covariance matrix of θ are calculated. The former is obtained

using the Mahanolobis metric, namely,

θ̄median = arg max
(
θ̄j − µθ̄

)′
Σ−1
θ̄

(
θ̄j − µθ̄

)
where µθ̄ and Σθ̄ are the posterior mean and variance-covariance matrix of p

(
θ|Y, θ̂, p (γ)

)
5. Given the posterior moments of θ, the posterior mode of γ is obtained by minimizing m̃ (yt|θ∗, λ) p (γ),

namely

γ∗ = arg max m̃ (yt|θ∗, λ) p (γ)

6. Steps 2-5 are repeated 1000 times
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D Figures

Figure 1: FT-VAR λ = (λδ, η)′

Figure 2: DS-VAR λ
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Figure 3: M-VAR λ
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Figure 4: DSGE Evaluation
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Figure 5: Prior versus Posterior DSGE Parameter Distribution
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Figure 6: DSGE Posterior IRFs
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Figure 7: BML One-Step-Ahead Forecasts & FVD
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Figure 8: BML FVD QB FVD
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Figure 9: Estimated density of marginal likelihood values across Monte Carlo replications
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Figure 10: Distribution of λ and λDS across Monte Carlo replications
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E Tables

Table 1: DSGE Parameter Description & Prior Distribution

Symbols Description Prior Distribution

B Fixed Cost Normal
S” Steady State Capital Adjustment Cost Elasticity Normal
α Capital Production Share Normal
σ Intertemporal Substitution Normal
h Habit Persistence Beta
ξw Wages Calvo Parameter Beta
σl Labour Supply Elasticity Normal
ξp Prices Calvo Parameter Beta
iw Wage Indexation Beta
ip Price Indexation Beta
z Capital Utilisation Adjustment Cost Beta
φπ Taylor Inflation Parameter Normal
φr Taylor Inertia Parameter Beta
φy Taylor Output Gap Parameter Normal
ρi Investment Shock Persistence Beta
ρg Government Spending Shock Persistence Beta
ρa Productivity Shock Persistence Beta
ρb Premium Shock Shock Persistence Beta
ρr Monetary Policy Shock Shock Persistence Beta
σi Investment Shock Uncertainty Inv. Gamma
σg Government Spending Shock Uncertainty Inv. Gamma
σa Productivity Shock Uncertainty Inv. Gamma
σb Risk Premium Shock Uncertainty Inv. Gamma
σr Policy Shock Uncertainty Inv. Gamma

Table 2: DSGE Evaluation

Model EγW
√

Eγ (W−EγW)2

BML 1257.300 215.452
QB 224.727 9.178
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Table 3: Full versus Limited Information Bayesian Monte Carlo Evaluation

Prior Moments BML QB
Parameters Mean STD Median Bias STD Median Bias STD

σa 0.462 0.100 0.461 0.002 0.069 0.451 0.023 0.013
σb 0.182 0.100 0.137 0.245 0.106 0.166 0.089 0.087
σg 0.609 0.100 0.560 0.080 0.095 0.613 0.006 0.018
σr 0.460 0.100 0.465 0.012 0.091 0.434 0.056 0.070
σq 0.240 0.100 0.180 0.248 0.097 0.268 0.119 0.070
ρa 0.950 0.100 0.948 0.002 0.131 0.985 0.036 0.018
ρb 0.180 0.100 0.113 0.371 0.085 0.169 0.061 0.046
ρg 0.970 0.100 0.861 0.112 0.189 0.983 0.013 0.009
ρq 0.710 0.100 0.813 0.145 0.097 0.698 0.017 0.059
ρm 0.120 0.100 0.084 0.300 0.094 0.026 0.782 0.021
S′′ 5.740 1.500 6.356 0.107 1.036 5.583 0.027 0.392
σ 0.900 0.375 0.888 0.013 0.353 0.966 0.074 0.242
h 0.710 0.050 0.684 0.037 0.045 0.725 0.021 0.013
ξw 0.700 0.100 0.763 0.091 0.080 0.717 0.025 0.017
σl 1.830 0.750 1.841 0.006 0.568 1.818 0.007 0.057
ξp 0.660 0.100 0.695 0.052 0.089 0.712 0.078 0.038
iw 0.580 0.150 0.591 0.019 0.063 0.595 0.025 0.012
ip 0.240 0.150 0.191 0.205 0.144 0.190 0.207 0.065
z 0.540 0.150 0.547 0.014 0.130 0.536 0.008 0.029
B 1.600 0.125 1.592 0.005 0.054 1.607 0.004 0.013
φπ 2.040 0.150 2.059 0.009 0.086 2.071 0.015 0.033
φr 0.810 0.100 0.749 0.075 0.091 0.814 0.005 0.052
φy 0.300 0.050 0.291 0.030 0.038 0.292 0.026 0.014
ρga 0.050 0.050 0.051 0.024 0.013 0.049 0.022 0.001
α 0.190 0.050 0.176 0.072 0.045 0.193 0.014 0.018

Total Bias 2.275 1.762
Average Bias 0.091 0.070
Total STD 3.890 1.408
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Table 4: Full versus Limited Information Bayesian Estimation

Prior Moments BML QB
Parameters Mean STD Median LwB UpB Median LwB UpB

σa 0.500 0.100 0.832 0.576 1.017 0.533 0.384 0.710
σb 0.500 0.100 0.331 0.266 0.395 0.237 0.193 0.271
σg 0.500 0.100 0.676 0.605 0.732 0.413 0.355 0.462
σr 0.500 0.100 0.679 0.586 0.808 0.539 0.432 0.623
σq 0.500 0.100 0.273 0.238 0.305 0.265 0.229 0.309
ρa 0.750 0.100 0.797 0.713 0.905 0.811 0.729 0.892
ρb 0.750 0.100 0.627 0.504 0.731 0.514 0.325 0.615
ρg 0.750 0.100 0.718 0.636 0.818 0.517 0.42 0.666
ρq 0.750 0.100 0.433 0.318 0.547 0.402 0.314 0.539
ρm 0.500 0.200 0.373 0.177 0.524 0.718 0.611 0.789
S′′ 4.000 1.500 2.241 2.040 3.624 2.245 2.019 3.513
σ 0.850 0.375 0.719 0.627 0.847 0.840 0.725 1.039
h 0.700 0.050 0.731 0.640 0.777 0.715 0.653 0.784
ξw 0.500 0.100 0.548 0.465 0.703 0.565 0.479 0.697
σl 2.000 0.750 1.870 0.988 3.427 2.425 1.096 3.486
ξp 0.500 0.100 0.427 0.294 0.563 0.541 0.452 0.681
iw 0.500 0.150 0.593 0.247 0.839 0.520 0.288 0.857
ip 0.500 0.150 0.115 0.036 0.241 0.060 0.032 0.172
z 0.500 0.150 0.678 0.428 0.869 0.633 0.390 0.875
B 1.250 0.125 1.184 1.030 1.409 1.367 1.090 1.495
φπ 1.750 0.150 1.558 1.367 1.905 1.801 1.510 2.159
φr 0.750 0.100 0.790 0.748 0.847 0.517 0.501 0.589
φy 0.125 0.050 0.247 0.178 0.347 0.254 0.165 0.324
ρga 0.100 0.050 0.105 0.064 0.147 0.097 0.044 0.148
α 0.300 0.050 0.192 0.127 0.211 0.194 0.164 0.242

Grid value λ frequency λDS frequency

0.20 544 165
0.35 162 575
0.50 101 169
0.75 49 5
1.00 23 1
1.25 18 1
2.00 2 0
2.50 5 0
5.00 1 0

Table 5: Distribution of hyper-parameters

35


	swp716 cover
	7741022_2
	1 Introduction
	2 Existing literature and our contribution
	3 Our Method
	3.1 The Prior Moments of  
	3.2 Controlling the tightness of the DSGE priors
	3.3 VAR Posterior Estimation
	3.4 Using quasi-Bayesian estimation to pinpoint misspecification
	3.4.1 Quasi-Bayesian estimation of 
	3.4.2 DSGE Evaluation


	4 Monte Carlo experiments
	4.1 The DSGE model
	4.2 The quasi-Bayesian estimator
	4.3 Identifying DSGE model misspecification

	5 Empirical application
	5.1 Selection of hyperparameters
	5.2 Assessing misspecification using quasi-Bayesian estimation

	6 Conclusion
	References
	Appendices
	A Proofs
	B  Draws
	C Implementation of Monte Carlo assessment of QB estimator
	D Figures
	E Tables


