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1 Introduction

This paper studies how optimal monetary policy is affected by the nature of fiscal policy behav-

ior. The focus is a case in which fiscal policy is ‘active’ (Leeper, 1991) so that monetary policy

must ensure that the real value of (nominal) government debt is stabilized. This contrasts with

the typical assumption adopted in textbook models, in which taxes and spending are passively

adjusted to stabilize the real government debt stock in response to changes in financing costs or

real debt generated by monetary policy actions. Such ’passive’ fiscal behavior ensures that the real

government debt stock is stabilized for any path of prices so that the government’s intertemporal

budget constraint is irrelevant for the monetary policymaker.

The analytical framework is a standard New Keynesian model (Gaĺı, 2008; Woodford, 2003)

extended to include long-term nominal government debt. The presence of this debt has no implica-

tions for optimal monetary policy under the textbook assumption of passive fiscal policy. However,

as noted by Sims (2011) and Cochrane (2018), under active fiscal policy, the presence of long-term

government debt allows the price level adjustments required to stabilize government debt to be

spread out over time. Long-term debt therefore influences the combinations of output, inflation

and real government debt that can be achieved by an optimizing monetary policymaker.

To explore the implications of debt duration for optimal monetary policy, two parameterizations

of the model are studied. The baseline parameterization assumes that the duration of government

debt is four years, based on data for a selection of OECD countries. An alternative ‘long duration’

parameterization assumes that the duration of government debt is eight years. ‘Active’ fiscal policy

is captured by an assumption that real taxes are held fixed. While stark, this is an obvious starting

point for the analysis of active fiscal policy, since fiscal instruments are independent of the level of

real government debt.

Optimal monetary policy is studied using a log-linearized version of the model and a social

welfare function based on a quadratic approximation to household utility. Policymakers are con-

strained to follow time-consistent policies, which is interpreted as an approximation to the way

that flexible inflation targeting mandates are pursued in practice.

In the absence of a lower bound on the short-term nominal interest rate, optimal policy is

characterized by a standard linear-quadratic optimization problem that can be studied analytically.

That analysis reveals several insights.

Under optimal policy the behavior of the output gap and inflation is determined by the elasticity

of the government debt stock with respect to previously accumulated debt. In equilibrium, this

elasticity increases with the duration of the debt stock. This implies that longer duration debt allows

for a slower stabilization of the debt stock following a shock and reduces the scale of fluctuations

in the output gap and inflation required to deliver that stabilization. The duration of government

debt therefore underpins the extent of the “debt stabilization bias” under time-consistent policy

(Leith and Wren-Lewis, 2013; Leeper and Leith, 2016).

Two further results are uncovered from a comparison to the textbook model with passive fiscal

policy. First, the so-called “divine coincidence” (Blanchard and Gaĺı, 2007) no longer holds. In the
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textbook model with passive fiscal policy, the effects of variations in the natural rate of interest

on the output gap and inflation are perfectly offset under optimal time-consistent monetary policy.

With active fiscal policy, the additional constraint that the government debt stock is stabilized

requires the monetary policymaker to allow deviations of output from potential and inflation from

target. These fluctuations generate welfare costs.

Conversely, welfare costs generated by cost-push shocks may be smaller under active fiscal

policy. A negative cost-push shock that lowers inflation in the near term increases the real value

of existing nominal debt. Stabilizing the real debt stock requires future policymakers to deliver

higher inflation. That increases expected inflation and makes the trade-off between stabilizing the

output gap and inflation more favorable.

In the presence of a lower bound on the short-term interest rate, the non-linearity induced by

the lower bound requires the model to be solved by numerical methods. Nonetheless, the analytical

results from the linear quadratic analysis also provide intuition for results in this case.

In the presence of a lower bound on the short-term interest rate, active fiscal policy may lead

to higher welfare than passive fiscal policy. This result depends on the balance between two effects.

Away from the lower bound, welfare losses are larger under active fiscal policy, since the ‘divine

coincidence’ does not hold. However, when constrained by the lower bound, the combination of

active fiscal policy and long-duration debt reduces welfare losses. Deflationary shocks that drive the

policy rate to the lower bound raise the real value of government debt, requiring future policymak-

ers to generate higher inflation to stabilize the debt stock. This increases inflation expectations,

lowering the real interest rate and thereby mitigates the recessionary effects of the shock.

For the baseline parameterization, the improvement in outcomes at the zero bound associated

with active fiscal policy is not large enough to offset poorer performance in normal times. However,

this result is reversed for the ‘long duration’ parameterization, so that overall welfare is higher than

the level achieved under passive fiscal policy.

These results contribute to a large literature studying the interaction between monetary and

fiscal policies, which has become an area of renewed interest following the Global Financial Crisis

and the Covid-19 pandemic. Much of that literature studies the role of particular fiscal policy

actions (for example Bianchi et al., 2020), the combination of alternative monetary and fiscal policy

rules (for example Billi and Walsh, 2021) and jointly optimal monetary and fiscal policies (Matveev,

2018). That literature has also explored the interplay between fiscal policy and unconventional

monetary policies such as quantitative easing (Bhattarai et al., 2015, 2019).

The present paper has a narrower focus, examining the implications for optimal interest rate

policy under specific assumptions about fiscal policy. Indeed the analysis abstracts from changes in

fiscal instruments, assuming that real tax revenue is held fixed, to maintain the focus on monetary

policy implications. This type of approach is similar to that of Kumhof et al. (2010), who study

simple monetary policy rules under active fiscal policy and Benigno and Woodford (2006), who

focus on optimal commitment policies. In contrast, this paper studies time-consistent monetary

policy, similarly to Blake and Kirsanova (2012), but assuming that the government finances its
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activities using long-term debt and that monetary policy is constrained by a lower bound on the

short-term nominal interest rate. The interplay between government debt duration, fiscal policy

behavior and the lower bound on the short-ter rate drives many of the results in the present paper.

The rest of the paper is structured as follows. Section 2 sets out the model, welfare-based loss

function and the baseline and ‘long duration’ parameterizations. Section 3 presents the analysis of

optimal time-consistent policy, assuming that there is no lower bound on the short-term interest

rate. Section 4 examines optimal time-consistent policy when the lower bound on the short-term

interest rate is accounted for. Section 5 concludes.

2 Model

This section describes the key elements of the model structure. A detailed derivation is provided

in Appendix A.

2.1 Households

The representative household maximizes a utility function defined over consumption, c, and hours

worked, n, subject to a budget constraint that defines how proceeds from wage and profit income,

net of taxes are allocated to short-term and long-term government bonds.

The optimization problem is

 
∑∞  1− 1

σ 1+ψ c 1 n
maxE t

0 βtφ t
t

−
 1

−− 1 1 + ψ
t=0 σ

subject to

VtDt +Bt = (%+ χVt)Dt−1 +Rt−1Bt−1 +Wtnt − Tt + Ft − Ptct (1)

where P is the price of consumption, W is the nominal wage, T is a lump sum tax and F represents

dividend payments from firms. The household may invest in one period government bonds B or

long-term government debt, D. To keep the model close to the textbook New Keynesian benchmark

a ‘cashless limit’ economy, following Woodford (2003), is considered.1

Long-term debt is a security that pays a sequence of nominal coupons that decay geometrically

at rate χ < 1.2 The nominal value of a newly issued bond at date t is Vt and such a bond pays

a coupon stream of %, %χ, %χ2, . . . in periods t + 1, t + 2, t + 3, . . . . The importance of the initial

coupon % > 0 is discussed in Section 2.3.

1Early explorations of the monetary policy implications of fiscal policy behavior focused on the implications for
money growth and seigniorage (see, for example, Sargent and Wallace, 1981). More recent treatments have abstracted
from money as government debt represents the vast majority of outstanding government liabilities in most countries
(see, for example, Cochrane, 2018).

2A key benefit of this setup is that the value of a bond issued at date t − j is equal to χjVt so that holdings of
all previously issued bonds can be summarized in terms of an equivalent quantity of newly issued bonds, simplifying
aggregation.
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Preferences are subject to an exogenous shock, φt which follows the process

φlnφt = ρφ lnφt−1 + σφεt (2)

φwhere εt is an iid normally-distributed shock with unit variance.

2.2 Firms

A continuum of monopolistically competitive producers of unit mass, indexed by j ∈ (0, 1), produce

differentiated products that form a Dixit-Stiglitz bundle purchased by households. Preferences over

differentiated products are given by

[∫ ] 1
1 −− 111−η 1−η

yt = y t
j,t dj

t

0

where yj is firm j’s output and the elasticity of demand ηt varies over time according to

ln ηt − ηln η = ρη (ln ηt−1 − ln η) + σηεt (3)

Firms produce using a constant returns production function in the single input (labor):

yj,t = Atnj,t

where At is an exogenous productivity process that follows:

lnAt − lnA = ρA (lnAt−1 − lnA) + σAε
A
t (4)

Firms set prices according to the Calvo (1983) staggered pricing scheme, with a probability

1 − α of changing price each period. A fixed production subsidy ensures that the steady state is

efficient.

2.3 Government debt and fiscal policy

The nominal government flow budget constraint is:

Bt + VtDt = Rt−1Bt−1 + (%+ χVt)Dt−1 +Gt − Tt

To focus on the case in which the government issues only long-term debt, short-term and long-

term debt are assumed to be issued in fixed proportions:

Bt = ϑDt

for ϑ ≥ 0.

5



The focus will be on the case of purely long-term debt, ϑ→ 0, so that:

VtDt = (%+ χVt)Dt−1 +Gt − Tt = (%+ χVt)Dt−1 − St

where the primary surplus is defined as S ≡ T −G.

Denoting real quantities with lower case letters means that the real-valued government budget

constraint is :

Vtdt = (%+ χVt)π
−1
t dt−1 − st (5)

Appendix A.1 demonstrates that the steady-state value of price of debt, V , is equal to unity

if the initial coupon satisfies % = β−1 − χ. Invoking this assumption allows d to be interpreted as

the (real) par value of long-term debt. This is useful for calibration purposes, since most data on

government debt stocks are measured at par, rather than market value.

Real government spending, gt (≡ Gt/Pt), is assumed to evolve according to a simple exogenous

process around its long-run steady state level, g (> 0):

gḡt = ρg ḡt−1 + εt (6)

where ḡt ≡ gt − g denotes the linear deviation of spending from steady state.

The baseline assumption for fiscal policy is that lump sum taxes are held fixed at τt = τ > g, ∀t
in real terms (with τt ≡ Tt/Pt). This means that the real primary surplus, s is determined entirely

by movements in real government spending. While stark, this assumption is a natural starting point

for analyzing the implications of ‘active’ fiscal policy for optimal monetary policy, since the real

primary surplus is completely independent of the level of real government debt.3 The simplicity of

the assumed fiscal policy behavior also makes it possible to derive some key results analytically.

Leeper (1991) develops a taxonomy of monetary and fiscal policy configurations that are consis-

tent with stable real government debt and determinate inflation. Leeper labels monetary and fiscal

policies as ‘passive’ or ‘active’ depending on whether or not they are constrained to respond to the

level of (or disturbances to) real government debt. Leeper’s taxonomy of policy configurations has

shaped much of the subsequent research on monetary and fiscal policy interactions, much of it in

the context of simple policy rules for monetary and fiscal policies.4

As will be demonstrated below, conditional on these (stark) assumptions for fiscal policy, optimal

monetary policy will be passive, since stabilization of the real debt stock is a binding constraint on

the monetary policymaker.5

3Billi and Walsh (2021) also adopt this assumption for one of their specifications of active fiscal policy.
4Woodford (2001, 2003) distinguishes between ‘Ricardian’ and ‘non-Ricardian’ fiscal policies, which correspond

to Leeper’s passive and active specifications respectively. Though Woodford’s terminology is well known, Leeper’s
active/passive distinction is used for the remainder of this paper.

5It is assumed that fiscal and/or monetary policy must ensure debt stabilization. This requires the real value of
the government debt stock to be stationary, returning to a fixed steady-state level following a disturbance. This is
a stricter condition than requiring that the debt stock be sustainable, in part reflecting the difficulty of identifying
sustainability from the stochastic properties of government debt. For example, on empirical grounds Bohn (2007,
p1846, emphasis added) argues that “A second strategy [to assess debt sustainability] is to consider stronger conditions
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2.4 Log-linearized model

Appendix A contains the derivation of the log-linearized approximation of the model around the

efficient steady state. The log-linear model equations are:

[ ]
x̂t = Etx̂t+1 − σ̃ R̂t − Etπ̂t+1 − r∗t (7)

π̂t = κx̂t + βE π̂ + u (8)
( t t+1 ) t

d̂t = β−1 d̂t−1 − π̂t − (1− ˆχ)V −1
t + ζ ḡt (9)

V̂t = − R̂t + χβE ˆ
tVt+1 (10)

where ζ is the steady-state ratio of government debt to output (d) and the parameters σy ˜ and κ

satisfy:

σ̃ ≡ σ (1− g)

(1 β
κ

− α) (1− α) ( )
≡ ψ + σ̃−1

α

The natural real interest rate, r∗, and cost-push shock, ut, are given by:

[ ( ) ( ) ]
r∗

1 + ψ ψˆ ˆ ˆ ˆ
t = Et At+1 −At − φ˜ t+1 φ

σ
− t

1 +
− (ḡ

1 + ψσ̃
t+1 − ḡt)

ψ

(1
ut =

− βα) (1− α) η− η̂
α η − t

1

Equations (7) and (8) are the familiar New Keynesian IS and Phillips curves (Gaĺı, 2008;

Woodford, 2003). Equation (9) is the government debt accumulation equation. Equation (10) is a

log-linearized version of the no-arbitrage condition between long-term and short-term bonds.

When fiscal policy is active, the government budget constraint is a constraint on monetary

ˆpolicy. Variations in the monetary policy instrument (the short-term interest rate R) influence

ˆthe evolution of long-term debt via their effects on the price of long-term debt (V ) and inflation.

Monetary policy must be set so that the government debt stock is stabilized.

2.5 Welfare-based loss function

Appendix B demonstrates that a loss function based on a second-order approximation to household

utility is given by:
∑∞ [ ]

L i
t = Et β π̂2

t+i + ωx̂2
t+i (11)

i=0

on policy, e.g., upper bounds on debt motivated by a limited capacity to service debt. Then stationarity in levels
is the most relevant econometric condition, and additional restrictions may apply.” In common with most of the
monetary policy literature, default on government debt is ruled out. Allowing for default gives rise to a richer set of
interactions between monetary and fiscal policy (see, for example, Uribe, 2006; Bi et al., 2018).
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where

ω = κη−1

Unsurprisingly, relative to the standard assumption of passive fiscal policy, active fiscal policy

affects the constraints upon the monetary policymaker, but not their objectives. Following Vestin

(2006), time-consistent pursuit of (11) is interpreted as ‘flexible inflation targeting’.

More broadly, the focus on time-consistent optimal policy is motivated by two considerations.

First, optimal monetary policy under commitment in this class of models tends to generate an

extreme form of time inconsistency.6 Second, there is substantial narrative evidence that monetary

policymakers have doubts over their ability to credibly pre-commit to future policy actions (see,

for example, Nakata, 2015).

2.6 A ‘textbook’ benchmark with passive fiscal policy

A textbook New Keynesian model with passive fiscal policy is a natural benchmark against which

to assess the implications of active fiscal policy. In the textbook model, a fiscal policy reaction

function ensures that primary surpluses are adjusted to ensure that the trajectory for government

debt consistent with (9) is stable. The fiscal solvency condition is satisfied for any path of the

price level, regardless of the actions of the monetary policymaker. Since government spending is

exogenous, passive fiscal policy requires that lump sum taxes adjust to ensure that the intertemporal

government budget constraint is satisfied.

In the textbook benchmark model, only the IS curve (7) and Phillips curve (8) are constraints

on the monetary policymaker. Indeed, in the absence of a lower bound on the short-term interest

rate, the IS curve is not a binding constraint and, in this case, the optimal time-consistent monetary

policy delivers the following ‘targeting rule’ (Gaĺı, 2008; Woodford, 2003):

ωx̂t + κπ̂t = 0 (12)

as will be demonstrated below.

Under passive fiscal policy, the precise formulation of the fiscal reaction function for the lump

sum tax rate does not affect equilibrium outcomes for the output gap and inflation. However, for

the purposes of comparison, it is assumed that the lump sum tax rate is adjusted to hold the stock
ˆof government debt constant at its steady-state level at all times: dt = 0, ∀t.

2.7 Parameter values

Table 1 shows the baseline parameter values.

The values of parameters governing preferences and technology are similar to those used by

Harrison (2017). The parameter values used in that paper implies a non-negligible chance of

6In a similar model, Leith and Wren-Lewis (2013) demonstrate that the optimal commitment policy implies that
government debt follows a random walk, allowing the policymaker to increase welfare in the near term by inducing
permanent movements in debt.
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encountering the zero lower bound, when the steady-state level of nominal interest rates is around

3%, as implied by the choice of β.

The parameters governing the persistence of the exogenous shocks (ρa, ρg, ρφ) are set equal to

the posterior mean estimates of the analogous shocks in Burgess et al. (2013) and Del Negro et al.

(2015) as appropriate. Markup shocks are assumed to be white noise (ρη = 0), following Burgess

et al. (2013).

Value Source/motivation

σ 1 Log utility
β 0.9926 Steady-state annual real interest rate ≈ 3%
g 0.2 Sims and Wolff (2013)
ζ 2 Reinhart et al. (2012) (advanced economies, pre-crisis)
η 7.88 Rotemberg and Woodford (1997)
α 0.855 Implies κ ≈ 0.05
ψ 0.55 Smets and Wouters (2007)

ρη 0 Burgess et al. (2013)
ρg 0.91 Burgess et al. (2013) (ρG)
ρA 0.96 Del Negro et al. (2015) (ρz)
ρφ 0.71 Burgess et al. (2013) (ρB)

χ
0.945 (≡ χ̄)
0.976 (≡ χL)

‘Average duration’ variant (see text)
‘Long duration’ variant (see text)

Table 1: Baseline parameter values

The parameter χ is important for the present study as it determines the maturity of government

debt in the model. Two values for this parameter using the OECD data on the Macaulay duration

of domestic government debt shown in Table 2. The baseline calibration sets the duration of

government debt to four years, slightly below average from Table 2 (4.2 years). The ‘long duration’

variant sets χ to deliver a Macaulay duration of eight years, double the baseline duration and

broadly in line with the longest duration of government debt in Table 2.7

7The steady-state Macaulay duration is given by (1− βχ)−1 (see, for example, Chen et al. (2012)(and Harrison)
(2017)). So if the desired Macaulay duration is M years, the required value of χ is given by χ = β−1 1− (4M)−1 ,
which incorporates the fact that each time period in the model is one quarter.

9



Country Sample Average Minimum Maximum

Austria 2000–2010 5.5 4.1 7
Denmark 2000–2010 4.7 3.7 7.3
Finland 2000–2010 2.8 2.4 3.5
France 2001–2004 4.5 4.3 4.8
Hungary 2000–2010 2.3 1.4 2.8
Italy 2000–2010 4.2 3.4 4.9
Norway 2000–2010 3.0 1.9 3.5
Spain 2000–2010 4.7 3.9 5.2
Sweden 2000–2005 2.8 2.7 3.1
United Kingdom 2000–2010 8.0 6.9 9.0
United States 2000–2010 3.5 3.4 4.0

Table 2: Macaulay duration of domestic government debt, selected countries

Notes: Macaulay duration is measured in years. Data were downloaded from OECD statistics library
(https://stats.oecd.org/) on 24 November 2018.

3 Time-consistent policy without a lower bound

This section examines the behavior of the model under time-consistent optimal monetary policy.

The policymaker at date t is treated as a Stackelberg leader with respect to both private agents

at date t and policymakers (and private agents) in dates t+i, i ≥ 1. The equilibrium Markov perfect

policy is one in{ which optimal dec} isions are a function only of the payoff relevant state variables

ˆ ˆ ˆin the model ηt, ḡt, At, φt, dt−1 . The policymaker recognizes that future allocations will satisfy

time-invariant policy functions with this property. Current policy decisions affect future outcomes

through their impact on the endogenous state variable, which in the context of the present model

is the stock of real government debt.

To derive insights that can be studied analytically, the lower bound on the short-term bond rate

is ignored. Given the quadratic objective function and fully linear constraints, the Markov perfect

policy functions are linear functions of the state variables. Section 4 examines the behavior of the

model when the presence of the lower bound on the short-term bond rate is accounted for.

3.1 The optimal policy problem

The policymaker’s optimization problem is characterized by the following Lagrangean:

1 [ ] [ ( )]
L̃t = π̂2

t + ωx̂2
t − µx ˆ

t x̂t − Etx̂t+1 + σ (1− g) Rt − Etπ̂t+1 − r∗t − µπt [π̂t − κx̂t − βEtπ̂t+1 − ut]
2 [ ( ) ] [ ]
− µd ˆ −1 ˆ ˆ −1 V ˆ ˆ ˆ ˜

t dt − β dt−1 − π̂t + (1− χ)Vt − ζ ḡt − µt Vt +Rt − χβVt+1 + βEtLt+1
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The first order conditions for minimization are:

0 = π̂t − µπt − β−1µdt (13)

0 = ωx̂t − µxt + κµπt (14)
[ ]

x ∂Etx̂t+1 ∂E− tπ̂t+1
0 = µ + σ (1 g) + βµπ

∂Etπ̂t+1
t ˆ ˆ t ˆ∂dt ∂dt ∂dt

d ∂E ˆ
V tVt+1 ∂E ˜

− t
µt + χβµt + β

Lt+1
(15)

ˆ ˆ∂dt ∂dt

0 = − (1− χ)µdt − µVt (16)

0 = − σ (1− g)µxt − µVt (17)

Derivatives of E ˜
tLt+1 can be eliminated by noting that:

∂L̃t
= β−1µd

∂E ˜
ˆ t

L
∂dt−1

⇒ t t+1
= β−1E

ˆ tµ
d
t+1

∂dt

The linear-quadratic nature of the problem and the focus on Markov-perfect equilibria implies

that equilibrium allocations are linear functions of the state variables. This means that:

∂EtZt+1

ˆ∂dt
≡ FZ

for some (fixed) coefficient FZ for any variable Z.

These observations can be used to write (15) as:

µdt = [Fx̂ + σ (1− g)Fπ̂]µxt + βFπ̂µ
π
t + χβF ˆµ

V d
V t + Etµt+1 (18)

A straightforward, but tedious, application of the method of undetermined coefficients can be{ }
used to characterize the solutions of the coefficients Fπ̂, Fx̂, F ˆ , F ˆ . Appendix C contains theV d

details and demonstrates that (conditional on solutions for Fπ̂ and F )̂:d

F −
x̂ = κ 1Fπ̂ − κ−1βFπ̂Fd̂

− −1 −1 − − −1 −1 − − −1F ˆ = (1 χ) β (1 χ) β Fπ̂ (1 χ) F ˆV d

Solving for Fπ̂ and F ˆ involves solving a coupled system of quadratic equations. The quadraticd

equation for Fπ̂ has a solution (conditional on F )̂ given by the following function:d

( ) 1 + χ− (1 + βχ)F
( ˆ

Fπ̂ = m Fd̂ ≡ ( ) ) d (19)
ω − κ −1 − ˜ −1 ( )

β 1 βF ˆ + + (1 χ) (κσ) 1κΞ Ξ − βF ˆd d

where Ξ ≡ (1− χ) σ̃−1 + κβ−1.

The quadratic equation for F −
ˆ can be factorized. One solution is shown to be F ˆ = β 1.d d

11



( )
Equation (19) then implies that F κ

π̂ = 1− β−1 < 0. The other solution, conditional on FΞβ π̂,

satisfies: ( )
1 + κσ̃ −1[β (1 χ)] Fπ̂ κσ̃ −1[β (1 χ)]

F ˆ≡ h (Fπ̂) =
− − −

(20)d Fˆ − χκσ̃ (1− −1
π χ)

The model has a unique, stable (‘determinate’) solution if the debt stock returns to steady state

from any initial condition, which requires that F ˆ< 1. Blake and Kirsanova (2012) demonstrate thed

the presence of endogenous state variables can generate multiple stable Markov perfect equilibria

for time-consistent linear-quadratic optimal policy problems.8

Fπ̂

Fd̂

Fd̂ = h (Fπ̂)

Fπ̂ = m
(
Fd̂
)

Fd̂ = β−1

B

A

C

(a) Baseline model (χ = 0.945) (b) ‘Long duration’ variant (χ = 0.976)

Figure 1: Solutions for Fπ̂ and Fd̂
Notes: Each panel plots the functions m and h defined by equations (19) and (20) respectively. Panel (a) shows the
baseline model and panel (b) shows the variant with long-duration government debt. In each case, point A denotes
the solution for the coefficients Fπ̂ and Fd̂ consistent with the unique Markov perfect equilibrium.

Figure 1 provides a graphical analysis of the candidate equilibria for Fπ̂ and F ˆ for the baselined

model (panel (a)) and ‘long duration’ parameterization (panel (b)). In both cases there are three

candidate equilibria, labeled A, B and C. Of these, B and C generate an explosive trajectory for

debt (since F −
ˆ ≥ β 1 > 1). Point A is the unique stable solution and is the equilibrium used ford

the experiments in the next subsections.9

Comparing panels (a) and (b) reveals that intersection point A in panel (b) lies to the North-

West of the corresponding intersection point in panel (a). So the equilibrium trajectory for govern-

ment debt is more persistent in the long duration variant. The longer-term debt variant also has

the property that inflation depends less strongly on previously accumulated debt.

Appendix C demonstrates that the first order conditions can be combined into a targeting rule:

ωx̂t + κπ̂t = Ξµdt (21)

8Indeed, one of their motivating examples adds (one period) government debt to a textbook New Keynesian model.
Aside from one-period debt, the model considered by Blake and Kirsanova (2012) differs from the present model in
two important respects: taxation has a distortionary effect on labor supply; and the tax rate is adjusted in response
to previously accumulated government debt. There is a unique Markov-perfect equilibrium if real taxes are held fixed
in the Blake and Kirsanova (2012) model (as in the baseline model considered in the present paper).

9Figure 1 provides a ‘local’ analysis, plotting the m and h functions in the vicinity of the intersection points. Figure
9 in Appendix D expands the range over which the functions are plotted to present a global picture, demonstrating
that no other candidates exist.

Fπ̂

Fd̂

Fd̂ = h (Fπ̂)
Fπ̂ = m

(
Fd̂
)

Fd̂ = β−1

B A
C
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Equation (21) reveals that the value of the multiplier on the government debt accumulation

equation, µdt , affects the optimal achievable combination of the output gap and inflation. If govern-

ment debt accumulation is not a constraint on monetary policy (as is the case under passive fiscal

policy) then µdt = 0, ∀t and (21) collapses to the targeting rule in the New Keynesian benchmark

model, (12), as previously claimed.

3.2 Impulse responses

This section examines the impulse responses of the model to shocks, comparing the baseline (‘av-

erage duration’) model to the textbook New Keynesian benchmark and to the ‘long duration’

variant.
ˆ ˆThe responses of the par value of debt, d and the long-term bond rate, R, are shown. The

long-term bond rate is computed as the the yield to maturity:

R̂t = χβE ˆ
tRt+1 + (1− ˆχβ)Rt
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Figure 2: Responses to shocks: baseline model and textbook model with passive fiscal policy

Notes: Impulse responses to shocks to the baseline model (solid black lines) and the ‘textbook’ variant with passive
fiscal policy described in Section 2.6 (dashed red lines). The scale of all shocks is normalized to deliver a 1% response
of the output gap in the baseline variant. Policy rate and long rate plotted in annualized units. All variables are
shown in percentage point deviations from steady state.
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Figure 2 plots responses of the model to a positive innovation in each of the shocks (solid black

lines) alongside the responses of the textbook New Keynesian model with passive fiscal policy (red

dashed lines). To aid the comparison, the scale of each shock is chosen so that it has an identical

impact effect on the output gap in the baseline model (1 percentage point in absolute terms).

Two key results emerge from Figure 2.

First, the so-called “divine coincidence” (Blanchard and Gaĺı, 2007) disappears when fiscal

policy is active. The divine coincidence result refers to the fact that optimal time-consistent policy

in the textbook model with passive fiscal policy (dashed red lines) achieves complete stability of both

the output gap and inflation in response to government spending, preference and productivity shocks

(rows 1–3). So, under passive fiscal policy, the relevant targeting criterion (12) can be achieved

with xt = πt = 0,∀t. This is feasible because these shocks affect the economy solely through their

effects on the natural real interest rate, r∗ and time-consistent policy tracks movements in r∗t with

ˆthe short-term nominal interest rate Rt, delivering a zero output gap and (hence) zero inflation.10

However, this policy response is not feasible when fiscal policy is active. Tracking exogenous

movements in r∗ with the nominal interest rate would not stabilize the government debt stock.11

A necessary condition for debt stabilization is that the interest rate responds to the debt stock.

Because the nominal interest rate must respond to the debt stock, it cannot fully insulate the

economy from the effects of exogenous changes in r∗ and so costly fluctuations in the output gap

and inflation cannot be avoided.

The second key result is that the dynamic responses of inflation and the output gap to govern-

ment spending, preference and productivity shocks are perfectly correlated (rows 1–3). In all cases,

the responses of inflation and the output gap satisfy the targeting criterion (21). Appendix C.1

shows that, in the absence of cost push shocks, this targeting criterion can be combined with the

first order condition for government debt (18) and the IS curve (7) to deliver a second order differ-

ence equation for inflation. Appendix C.1 further demonstrates that the solution to that difference

equation implies that inflation and the output gap follow AR(1) processes given by:

π̂t+1 = F ˆπ̂td

x̂t+1 = F ˆx̂td

for t ≥ 1.

This result means that both inflation and the output gap follow identical (to scale) AR(1)

processes in response to preference, productivity and government spending shocks. In Figure 2,

the initial response of the output gap in period 1 is equal to unity in all cases, by virtue of the

normalization assumption. The fact that the autoregressive parameter is equal to F ˆ is an importantd

10See Gaĺı (2008) for a complete analysis of optimal monetary policy in the textbook model.
11 ˆAn informal proof by contradiction is as follows. Suppose that tracking exogenous movements in r∗ with R does

stabilize inflation so that π̂t = 0, ∀t. Note now that equation (10) implies that the value of long-term debt will be
a function of the exogenous fluctuations in r∗ ˆ(since Rt = r∗t ). Inspecting (9) reveals than an exogenous impulse to
ˆ ˆVt with π̂t = 0,∀t generates an explosive trajectory for dt given that β−1 > 1. So full stabilization of inflation by
tracking r∗ with the policy rate does not also ensure that the debt stock returns to steady state.
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Figure 3: Responses to shocks in baseline model and ‘long duration’ variant

Notes: Impulse responses to shocks to the baseline model (solid black lines) and variant with long debt duration
(dashed red lines). The scale of all shocks is normalized to deliver a 1% response of the output gap in the baseline
variant. Policy rate and long rate plotted in annualized units. All variables are shown in percentage point deviations
from steady state.

A key result is that the output gap and inflation are better stabilized in response to preference,

productivity and government spending shocks for the long duration variant (rows 1–3). The re-

sponses of the output gap and inflation are also more persistent in this variant, compared with the

baseline calibration. A corollary of the smaller responses of inflation and the output gap is that

the policy rate must adjust by more in response to each of these shocks.

The greater persistence of the output gap and inflation responses in the long-duration variant

follows from the result that these variables both follow AR(1) processes with parameter F .̂ Asd

shown in Figure 1, F ˆ is larger for the long duration variant.d

These results relate to previous findings that optimal time-consistent policy may exhibit a “debt

stabilization bias”. Leith and Wren-Lewis (2013) study jointly optimal monetary and fiscal policy

15
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in a similar model.12 In their model, optimal time consistent policy rapidly returns the government

debt stock back to steady state following a shock. That in turn requires large movements in output

and inflation to achieve the required change in real debt values. Leeper et al. (2019) study the

responses of a non-linear model with optimal monetary and fiscal policy for alternative assumptions

about government debt duration. They also find that longer duration debt dampens the responses

of macroeconomic variables to shocks under optimal policy.

The presence of long-term debt reduces the degree to which large and immediate movements in

inflation will reduce the real value of government debt. Instead, it is possible to stabilize the debt

stock through smaller but more persistent movements in inflation (which may nonetheless have a

sizable effect on the market value of debt). The presence of government debt with a longer duration

allows even smaller, and even more persistent, changes in inflation to be used to bring the debt

stock back to steady state following a shock.

3.3 Welfare implications

Figure 4 examines the welfare implications of the shocks across model variants. In each panel an

approximation to the square root of the loss L 13
t is plotted for each model variant. The square

root transformation facilitates comparison of the model variants, but obviously understates the

true welfare differences between them.
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Figure 4: Normalized losses for each model variant

√ ∑ [ ]
ˆNotes: Normalized losses are defined L ˆas t , where Lt ≡ E H

t i=0 β
i π̂2

t+i + ωx̂2t+i , a finite-horizon approximation
to the loss defined in (11). The horizon H is set to 200.

As expected, the divine coincidence result for the textbook model with passive fiscal policy

implies that there are no welfare losses from preference, productivity or government spending

shocks in that variant (red dashed lines). For these shocks, losses are, initially, much smaller for

the long duration variant (green dash-dot lines) compared with the baseline model (solid black

lines). As the shocks dissipate, however, losses are larger for the long duration variant.

These results are consistent with the observation from Figure 3 that inflation and the output

12The main differences are the inclusion of distortionary taxation and the assumption that the government finances
its activities using one-period debt.

13 ∑ [ ]
ˆThe approximation is to compute losses over a finite horizon, H: Lt ≡ E H i 2 2

t i=0 β π̂t+i + ωx̂t+i . Results are
shown for H = 200, but are not sensitive to this assumption.

16



gap exhibit muted and persistent responses to preference, productivity and government spending

shocks in the long duration variant. The presence of longer duration debt increases the extent to

which the monetary policymaker is able to smooth welfare losses across time. The existence of

ˆlonger duration debt means that bond prices (V ) can be materially affected by relatively small,

but very persistent movements in inflation. The optimal monetary policy exploits this mechanism

to mitigate welfare losses in the near term, at the expense of larger losses in the longer term.

For cost-push shocks, the welfare ranking across model variants is, initially, reversed. On impact,

losses are greatest for the textbook model with passive fiscal policy and the long duration variant

generates larger losses than the baseline model. Because the cost-push shock has no persistence,

losses under passive fiscal policy are zero from period 2 onwards.14

The smaller initial losses with active fiscal policy can be understood by observing that inflation

is below target from period 2 onwards in these variants (Figures 2 and 3). Relative to the textbook

model with passive fiscal policy, therefore, the Phillips curve trade-off in the first period is improved,

because inflation expectations are lower. This allows the policymaker to achieve a less costly mix

of inflation and the output gap in period 1. From period 2 onwards, losses are higher than under

passive fiscal policy because the requirement that monetary policy stabilizes the government debt

stock requires a persistent deviation of inflation and the output gap. The net effect on the present

value loss, L1 depends on whether the gains from the improved trade-off in period 1 outweigh the

future losses.

Figure 5 shows outcomes in period 1 for the baseline model and the textbook model with

passive fiscal policy. The solid black lines show the baseline model and gray dashed lines show the

textbook model. In both cases, the inflation-output gap trade-off is determined by the intersection

of an upward-sloping Phillips curve (8) and a downward-sloping optimal policy criterion. The

optimal policy criterion under passive fiscal policy is given by (12). Appendix C.1 demonstrates

that the targeting criterion in the baseline model can be written as:

(
ωx̂ + κ− βΞF Ω−

)
1 π̂ = Ω−1

t π̂ t Et (ωx̂t+1 + κπ̂t+1) (22)

( )
where Ω = χ+ Fπ̂ 1− (1− β) 1−χ > 0.κσ̃

As noted above, the optimal response in the baseline model implies that inflation is negative

from period 2 onward. The spike in inflation in period 1 reduces the real value of debt and negative

inflation thereafter helps to stabilize real debt. The negative inflation in period 2 implies that the

Phillips curve in the baseline model lies below the Phillips curve under passive fiscal policy.15

Other things equal, a downward shift in the Phillips curve allows the monetary policymaker to

achieve a better outcome (a smaller increase in inflation and a smaller reduction in the output gap).

The optimal combination of the output gap and inflation that is chosen, however, depends on the

14The textbook model has no endogenous state variables, so the absence of any disturbance from period 2 onward
allows complete stabilization of the output gap and inflation (Gaĺı, 2008, Figure 5.1).

15The upward-sloping black line in Figure 5 lies below the upward-sloping gray dashed line. Inflation expectations
under passive fiscal policy are zero (π̂2 = 0).

17



x̂1

π̂1

ωx̂1 + κπ̂1 = 0

ωx̂1 +
(
κ− βΞFπ̂Ω−1

)
π̂1 = Ω−1 (ωx̂2 + κπ̂2)

π̂1 = κx̂1 + u1

π̂1 = κx̂1 + βπ̂2 + u1

Figure 5: Optimal responses to cost-push shock in period 1

Notes: The diagram shows the optimal policy decisions when a cost-push shock arrives in period 1, for the baseline
model (solid black lines) and the textbook model with passive fiscal policy described in Section 2.6 (dashed gray
lines). The upward-sloping lines are the Phillips curve, (8), conditional on expected outcomes in period 2. The
downward-sloping lines are the optimal trade-off criteria: equation (22) for the baseline model and equation (12) for
the passive fiscal policy variant. The ellipses are iso-loss lines, tracing out combinations of the output gap (x̂) and
inflation (π̂) that deliver the same value of the period 1 loss, L1 ≡ π̂2 + ωx̂21 1.

trade-off criterion (22). Relative to passive fiscal policy, the trade-off criterion in the baseline model

features a downward shift and an clockwise tilt. The downward shift reflects the fact that the right( )
hand side of (22) is negative.16 The tilt occurs because κ− βΞFπ̂Ω−1 < κ. The resulting optimal

combination of the output gap and inflation features a similar inflation rate to the New Keynesian

case, but a noticeably smaller negative output gap.

The ellipses in Figure 5 are iso-loss curves, showing combinations of the output gap and inflation

in period 1 that satisfy π̂2
1 + ωx̂2

1 = L. The ellipse for the baseline model (solid black line) lies

within the ellipse for the model with passive fiscal policy (dashed gray), so that the losses incurred

in period 1 are lower in the baseline model. While per-period losses are larger from period 2

onwards, the gain in period 1 is sufficient for the discounted loss L1 to be lower in the baseline

model than under passive fiscal policy.

4 Time-consistent monetary policy at the lower bound

The analysis in this section accounts for the existence of a lower bound on the short-term bond rate.

To do so, the model is solved using projection methods. To reduce the number of state variables

(and hence the dimensionality of the problem), the variances of government spending shocks and

productivity shocks are set to zero.17

16The output gap and inflation in period 2 are both negative.
17One motivation for ignoring government spending shocks is that the precise nature of the effect of government

spending on debt is determined by the particular (extreme) assumption that real lump sum taxes are held fixed. A
motivation for ignoring productivity shocks is that productivity and preference shocks both influence the model only
through their effects on the natural rate of interest, r∗. If these two shocks had identical persistence (ρA = ρφ), then
their effects are identical, up to scale.
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These simplifications imply that the natural real interest rate, r∗ can be treated as a ‘primitive’

disturbance, which is assumed to follow a first-order autoregressive process:

r∗t = ρrr
∗
t−1 + σrε

r
t (23)

Similar, the cost push shock process is given by:

ut = ρuut−1 + σuε
u
t (24)

Both εr and εu are i.i.d., normally distributed and have unit variance. Values for the shock

parameters are shown in Table 3.

Description Value

ρr Natural rate persistence 0.85
100× σr Natural rate shock standard deviation 0.225

ρu Cost-push shock persistence 0
100 σu Cost-push shock standard deviation 0.135×

Table 3: Shock process parameters

Again, the parameter values are set with reference to the assumptions in Harrison (2017).

Relative to that paper, the variance of the disturbance to r∗ is slightly smaller.18 The assumed

persistence of the r∗ process is close to the average persistence of the shock processes (productivity,

preference and government spending) used in Section 3.

4.1 Optimal policy problem and solution

The policymaker’s optimization problem is the same as considered in Section 3.1, with the addition

of a constraint on the short-term bond rate:

R̂t ≥ lnβ (25)

where the lower bound on the nominal interest rate is assumed to be zero.19

The first order conditions (13)–(16) are unchanged. The first order condition for the short-term

nominal rate becomes

0 = −σ̃µxt − µVt − µZt

where µZt is the Lagrange multiplier on the constraint (25). The fact that the bound on the policy

rate binds occasionally gives rise to a contemporary slackness condition reported in Appendix E.1.

18One difference between the model specification used here and that in Harrison (2017) is that the effective slope
of the IS curve is equal to σ̃ = σ (1− g) < σ. This means that the effect of policy rate changes on aggregate demand
is smaller, making the stabilization problem more challenging in the presence of the zero lower bound.

19Variables in the model are measured relative to steady state, so lnβ measures the log difference between the
steady state gross nominal interest rate R = β−1 and a gross nominal rate of R = 1 (corresponding to a net nominal
interest rate of zero).

19



The model is solved using projection methods. To reduce the dimensionality of the state space,

the stochastic processes (23) and (24) are approximated using finite state Markov processes with

transition matrices derived using the Rouwenhorst (1995) method.20 The model is solved using

policy function iteration. This approach is facilitated by using a good initial ‘guess’ for the policy

functions, which is provided by the piecewise linear solution algorithm for time-consistent optimal

policy subject to instrument constraints in Harrison and Waldron (2021). A detailed description

of the solution approach is provided in Appendix E.

4.2 Outcomes at the lower bound

The behavior of the model at the lower bound is explored using a recessionary scenario. In period

0, the model is assumed to be at its deterministic steady state. In period 1, the natural real interest

rate is initialized at a negative value (−4% on an annualized basis) and is assumed to follow the

process (23) (with εrt = 0, t = 1, . . . ). The values of the cost-push state are set to zero throughout

the simulation (ut = 0, t = 1, . . . ). Conditional on the initial value of the natural rate, r∗1, the

exogenous states {ut, r∗t } follow their most likely paths.21 However, in each periods outcomes for

the endogenous variables account for the risk that future shocks arrive, including those that would

prolong the time spent at the lower bound.

Figure 6 shows the effects of the recessionary scenario. The solid black lines show the baseline

model, the red dashed lines show the variant with long duration debt and the gray lines show the

textbook model with passive fiscal policy. The dotted line in the top left panel shows the trajectory

of the natural real interest rate, r∗.

Relative to the textbook model with passive fiscal policy (gray lines), active fiscal policy reduces

the scale of the recession and allows the short-term policy rate to lift off from the zero bound earlier.

The deflationary effect of the recession increases the real value of government debt. Other things

equal, this increases inflation expectations, as higher future inflation will be required to stabilize

the real debt stock. This mechanism reduces expected real interest rates, stimulating spending and

supporting inflation. In turn, that mitigates the recessionary effects of the fall in the natural real

interest rate.

Comparing the results from the baseline and ‘long duration’ variants reveals that longer duration

debt is associated with a (slightly) smaller recession and a later liftoff from the zero bound. The

results in Section 3.2 reveal that, away from the zero bound, optimal policy is able to better

stabilize the output gap and inflation with long duration debt. However, achieving this improved

stabilization performance requires larger movements in the policy rate.

This implies that, with long duration debt, the zero bound is a more binding constraint on the

setting of the policy rate required to deliver smaller output and inflation responses to a recessionary

20Kopecky and Suen (2010) demonstrate that this approach generates accurate approximations to autoregressive
process with high persistence. In the context of the present model, this reduces the computational burden of analyzing
the case in which shocks to the natural rate of interest r∗ are very persistent.

21Simulations are constructed using linear interpolation of the policy functions. Linear interpolation is also applied
to the natural rate, r∗, so that the trajectory for r∗ satisfies r∗t = ρt−1

r r∗1 .
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Figure 6: A recessionary scenario that causes the ZLB to bind

Notes: The panels show outcomes from simulations of the baseline model (solid black lines), the variant with long-
duration debt (dashed red lines) and the textbook model with passive fiscal policy described in Section 2.6 (gray
lines). In each case, the simulation is constructed from the policy functions solved by projection methods. The initial
value of the natural rate state r∗1 (plus the deterministic steady-state interest rate) is set to −4% on an annualized
basis. Thereafter r∗ follows the process (23), with shocks set to their most likely value of zero, εrt = 0, t = 2, . . . . The
cost-push state is set equal to its most likely value, ut = 0, t = 1, . . . . The initial debt stock is at the deterministic

ˆsteady state: d0 = 0.

shock. For the particular shock examined in Figure 6, the net effect is a slight improvement in

output and inflation stabilization. However, this improvement requires the policy rate to remain

at the zero bound for an additional two quarters compared with the baseline model.

These effects are also apparent in the simulated distributions of key variables, for which Table

4 provides a summary.22

The results for the textbook model with passive fiscal policy demonstrate the familiar “deflation

bias” (Eggertsson, 2006): under time-consistent policy, the zero lower bound induces a downward

skew in the distributions for inflation and the output gap, both of which have a negative mean. The

mean of the policy rate is below the deterministic steady-state value of 3%, as the downward skew

in the distribution of expected inflation dominates the positive effect on the mean from truncation

of the distribution at zero.

In contrast, the average policy rate is at or above the deterministic steady-state value of 3% for

the variants of the model with active fiscal policy. In these cases, the truncation effect of the zero

bound is dominant, pushing up on the mean policy rate. One driver of this result is that the policy

rate is more variable when fiscal policy is active, particularly for the long duration debt variant

22Each model variant was simulated for 260, 000 periods, with the first 10, 000 periods discarded.
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Active fis
Baseline

cal policy
Long duration

Passive fiscal policy
‘Textbook model’

Mean Std dev Mean Std dev Mean Std dev

Quarterly inflation, %
Output gap, %
Annualized policy rate, %
Debt stock, % deviation from SS( )

0.01
0.00
3.0
0.18

0.17
0.80
2.9
0.23

0.04
0.01
3.1
1.3

0.14
0.66
3.4
0.31

-0.08
-0.01
2.7
0

0.15
0.68
3.5
0

Loss per period π̂2
t

When at ZLB:

2+ ωx̂t 0.034
0.057

–
–

0.023
0.023

–
–

0.032
0.059

–
–

When not at ZLB: 0.026 – 0.023 – 0.010 –

ZLB incidence, % 24 32 45
Table 4: Summary statistics from alternative model variants

(see Section 3.2 and Table 4). Higher variability of the policy rate increases the truncation effect,

other things equal.

Another driver of this result is the distribution of debt under active fiscal policy. Table 4 shows

that average debt is above the deterministic steady-state for both the baseline and long duration

model variants. This is because recessionary shocks that cause the lower bound to bind generate

increases in the debt stock via the debt deflation mechanism described above (Figure 6). As there

is no upper bound on the policy rate, the debt deflation mechanism does not operate in reverse

for large expansionary shocks and the debt distribution shifts to the right (relative to a symmetric

distribution around the deterministic steady state).

The implications of initial debt levels for the responses to an expansionary shock are explored

in Figure 7. The top panel shows the responses of the baseline model to a scenario in which the

initial level of (annualized) r∗ is 1pp above steady state under two assumptions for the initial stock

of debt (d). The solid black lines show a case in which the initial stock of debt is equal to the mean

of the stochastic distribution (from table 4). The dashed red lines show the case in which the initial

debt level is equal to the deterministic steady state. The bottom panel repeats this experiment for

the variant of the model with long duration debt.

Figure 7 shows that the expansionary scenario generates a larger positive output gap and

more inflation when the initial level of debt is at its stochastic mean, compared to the case in

which the initial debt level is at the deterministic steady state. When debt is relatively high,

additional inflation is required to stabilize the real debt stock. As a result, the rightward shift

in the distribution of debt generates a rightward shift in the distributions of the output gap and

inflation. Indeed, average inflation and output gaps are slightly positive under active fiscal policy.23

Unsurprisingly, the rightward shift in these distributions is particularly evident for the long duration

variant, for which debt is higher on average.

The results so far indicate that, relative to the textbook model with passive fiscal policy, active

fiscal policy generates a rightward shift in the distributions of the output gap and inflation. As

23The mean output gap for the baseline model is slightly positive but rounds to zero to two decimal places, as
reported in Table 4.

22



5 10 15 20
2.6

2.8

3

3.2

3.4

3.6

3.8

4
Short-term policy rate (annualized)

Average debt Steady-state debt r*

5 10 15 20
0

0.1

0.2

0.3

0.4
Output gap (per cent)

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1
Quarterly inflation (per cent)

5 10 15 20
0

0.05

0.1

0.15
Debt stock (log deviation)

5 10 15 20
2

2.5

3

3.5

4
Short-term policy rate (annualized)

5 10 15 20
0.05

0.1

0.15

0.2
Output gap (per cent)

5 10 15 20
-0.04

-0.02

0

0.02

0.04

0.06

0.08
Quarterly inflation (per cent)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Debt stock (log deviation)

A: Baseline model

B: Long duration debt

Figure 7: An expansionary shock with for different assumptions about initial debt

Notes: The top panels (A) show outcomes from simulations of the baseline model. The lower panels (B) show
outcomes from simulations of the variant with long-duration debt. In all cases, the simulation is constructed from the
policy functions solved by projection methods. The initial value of the natural rate state r∗1 is set to 1% above the
deterministic steady-state (on an annualized basis). Thereafter r∗ follows the process (23), with shocks set to their
most likely value of zero, εrt = 0, t = 2, . . . . The cost-push state is set equal to its most likely value, ut = 0, t = 1, . . . .
The dashed red lines show the case in which the initial value of the debt stock is set to the deterministic steady state,
d̂0 = 0. The solid black lines show the case in which the initial value of the debt stock is equal to the mean of the
stochastic distribution reported in Table 4.

noted in the discussion of Figure 6, this increases inflation expectations and hence mitigates the

effects of recessionary shocks when the policy rate is constrained at the lower bound. On the other

hand, the analysis in Section 3.2 revealed that, absent the zero bound, welfare would be higher in

the textbook model with passive fiscal policy.

Which of these effects dominates?

The policy rate is at the zero bound 24% of the time in the baseline model, compared with 45%

under passive fiscal policy (Table 4). Conditional on being at the lower bound, losses are slightly

lower on average. However, these performance improvements are outweighed by higher losses when

policy is not constrained by the zero bound. Relative to passive fiscal policy, average losses are

therefore slightly higher in the baseline model.

For the variant of the model with long duration debt, the policy rate is at the zero bound around

a third of the time, midway between the baseline model and passive fiscal policy. Conditional on

being at the zero bound, losses are considerably lower than the other variants. This performance

improvement is sufficient to compensate for higher losses (compared with passive fiscal policy) away
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Figure 8: Recessionary scenario under average debt levels

Notes: The panels show outcomes from simulations of the baseline model (solid black lines), the variant with long-
duration debt (dashed red lines) and the textbook model with passive fiscal policy described in Section 2.6 (gray
lines). In each case, the simulation is constructed from the policy functions solved by projection methods. The initial
value of the natural rate state r∗1 (plus the deterministic steady-state interest rate) is set to −4% on an annualized
basis. Thereafter r∗ follows the process (23), with shocks set to their most likely value of zero, εrt = 0, t = 2, . . . . The
cost-push state is set equal to its most likely value, ut = 0, t = 1, . . . . The initial value of the debt stock is set equal
to the mean of the stochastic distribution reported in Table 4.

from the zero bound.

The material welfare improvements at the zero bound for the long duration debt variant are not

evident from Figure 6. Once again, the distribution of government debt matters. Figure 8 repeats

the experiment from Figure 6, but under the assumption that initial debt stocks are equal to the

mean of the stochastic distribution. This reveals greater performance improvements in the model

with long-duration debt. Higher average debt generates higher inflation expectations, reducing real

interest rates and stimulating aggregate demand. In this case, liftoff from the zero bound occurs

at the same time as the baseline model, though the policy path remains slightly lower after liftoff.

5 Conclusion

This paper studies the behavior of a simple model with long-term government debt, time consistent

monetary policy and active fiscal policy. Active fiscal policy may support inflation expectations at

the lower bound, as agents expect higher future inflation to be used to reduce the real value of debt

accumulated during the recession. This effect may be sufficient to improve welfare relative to the

textbook case in which fiscal policy is passive.
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A The log-linear model

ˆThis appendix derives a log-linear representation of the model. For variable Xt, Xt ≡ lnXt − lnX

defines the log-deviation of Xt from its steady-state value, X. A useful feature of the derivation is

that the steady-state level of output is normalized to unity, as described in Appendix A.4.

A.1 Households

The first-order conditions for the optimization problem are:

− 1

φ σ
tct = µtPt (26)

ψφtnt = Wtµt (27)

0 = − µt + βRtEtµt+1 (28)

0 = − Vtµt + βEt (%+ χVt+1)µt+1 (29)

where µ is the Lagrange multiplier on the nominal budget constraint (1).

Let the real Lagrange multiplier be defined as:

Λt ≡ Ptµt

and real short bond holdings and long-term debt as

B
bt ≡ t

Pt
D

dt ≡ t

Pt

The first order conditions for short-term and long-term bond holdings, (28) and (29) can be

written in terms of real-valued variables as:

0 = − Λt + βR −1
tEtΛt+1πt+1 (30)

0 = − ΛtVt + βEt (%+ χVt+1) Λt+1π
−1
t+1 (31)

Combining these equations gives:

RtVtE −1 −1
tΛt+1πt+1 = Et (%+ χVt+1) Λt+1πt+1 (32)

In steady state this implies that:

V = % (R− −1 (
χ) = % β−

)
1 − −1

χ

Setting % = β−1−χ therefore implies that V = 1, that is, the steady-state price of debt is unity.

Adopting this assumption means that the real debt stock d can be treated as the real par value of
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debt.

Log-linearizing (32) gives: ( )
ˆ ˆ ˆRV Rt + Vt = χV Vt+1

which implies that:

V̂t = − ˆ ˆRt + χβVt+1 (33)

which uses the fact that R = β−1 in a zero inflation steady state.

Combining (26) and (30) creates an Euler equation for consumption:

− 1 − 1

φ c σ = βR E φ c σ π−1
t t t t t+1 t+1 t+1

which can be log-linearized to give:

[ ] ( )
ˆĉt = Etĉt+1 − σ Rt − Etπ̂t+1 − ˆσEt φt+1 − φ̂t (34)

The first order conditions for labor supply (27) and consumption (26) can be combined and

log-linearized to give

ψn̂t = ŵt − σ−1ĉt (35)

A.2 Firms

The real profit of producer j is:

( )( )−η(1 + Γ)P t
j,t Pj,t wt Pj,t
yj,t − wtnj,t = (1 + Γ) − yt

Pt Pt At Pt

where Γ > 0 is the subsidy that ensures that the steady-state level of output is efficient.

The objective function for a producer that is able to reset prices is:

∑∞ ( )( )−η
k−t Pj,t w t

E k Pj,t
max t Λk (βα) (1 + Γ)

Pk
− yk
Ak Pk

k=t

where Λ represents the household’s stochastic discount factor and 0 ≤ α < 1 is the probability that

the producer is not allowed to reset its price each period.

Familiar manipulations (see, for example, Harrison, 2017) deliver a log-linearized inflation equa-

tion: ( )
(1

π̂
− βα) (1− α) η

t = ŵt
α

− Ât − η̂ π− t + βEtˆt+1 (36)
η 1

A.3 Government

Log-linearizing (5) gives:

( )%+ χV sˆ ˆ ˆVt + dt = dt−1
V

− ˆπt + χVt − t − s
V d
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Since the steady-state level of output is normalized to unity, V d = ζ where ζ is the steady state
%+χVratio of government debt to output. Moreover, in the steady state, = R = β−1.V

These observations imply that:

( )
d̂t = β−1 d̂t−1 − ˆπ̂ −1

t − (1− χ)Vt − ζ s̄t (37)

where s̄t ≡ st − s is the linear deviation of the surplus from steady state.

The real surplus is given by:

st = τ − gt

since taxes are held fixed (τt = τ,∀t).
In deviations from steady state, this implies that:

s̄t = −ḡt (38)

Using this result in (37) gives

( )
ˆ ˆ ˆd −1 −1
t = β dt−1 − π̂t − (1− χ)Vt + ζ ḡt (39)

A.4 Market clearing and the efficient allocation

Without loss of generality, the steady-state level of productivity, A is chosen to ensure that the

steady-state level of output y is equal to unity. This implies that the steady-state level of government

spending g represents that fraction of output consumed by the government (so 0 ≤ g < 1).

Aggregate output satisfies

Atnt = Dtyt (40)

where ∫ 1( )−ηPDt ≡ jt
dj (41)

0 Pt

is a measure of price dispersion.

Goods market clearing requires:

ct + gt = yt

where Dt is a second order price dispersion term (see, for example, Gaĺı, 2008).

To a log-linear approximation, this is:

(1− g) ĉt + ḡt = ŷt (42)

The subsidy required to make the steady state efficient is:

η
Γ =

η − 1
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In a flexible price equilibrium with no distortion from monopolistic competition, the real wage

will equal the marginal product of labor, which is equal to At. So the efficient allocations, denoted

with an asterisk, can be found from the labor supply relation (35):

ˆψn̂∗t = At − σ−1ĉ∗t

ˆImposing market clearing, (1− g) c∗ + ḡ = A + n∗ = y∗t t t t t implies that potential output is given

by:

∗ σ (1− g) (1 + ψ) 1ˆŷt = A
1 + ψσ (1− t + ḡ

g) 1 + ψσ (1− t
g)

A.5 The ‘gap’ representation

The Phillips curve and Euler equation can be written in terms of the output gap, defined as the

deviation between output and the efficient level of output.

Substituting the labor supply equation (35) into the log-linearized pricing equation (36) gives:

( )(1 βα) (1 α) ˆπ̂t =
− −

ψn̂t + σ−1ĉt −At + βEtπ̂t+1
α

(1− βα) (1− α) η− η̂t
α η 1

((
−

) )(1 βα) (1
=

− − α)
ψ + σ−1 (1− −1 ˆg) ŷt − (1 + ψ)At

α
− σ−1 (1− −1g) ḡt

(1− βα) (1 α
+ βEtπ̂t+1

− ) η− η̂
α η − t

1
( )(1

=
− βα) (1− α)

ψ + σ−1 −1(1 g) x̂t + βEtπ̂t+1 + ut
α

−
[( ) ](1

+
− βα) (1− α)

ψ + σ−1 (1− −1g) ŷ∗t − ˆ −1(1 + ψ)At − σ−1 (1− g) ḡt
α

where the second line uses market clearing and the third line uses the definition of the output gap

ŷt − ŷ∗t ≡ x̂t and defines the cost push shock, u, as:

(1 )
u

− βα (1
t

− α) η≡ − η̂
α η − t

1

Notice that the final term in brackets on the final line is given by:

( )
1ψ + σ−1 (1− −1 ˆ −g) ŷ∗t − (1 + ψ)At − σ−1 (1− g) ḡt

[ ]
= σ−1 − −1(1 g) (1 + ψσ (1− g)) ŷ∗t − ˆ(1 + ψ)σ (1− g)At − ḡt
= 0

The Phillips curve can therefore be written as:

π̂t = κx̂t + βEtπ̂t+1 + ut (43)
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where ( )(1
κ

− βα) (1− α)≡ ψ + σ−1 (1− −1g)
α

The Euler equation for consumption (34) can be written as:

[ ]
−(1− 1g) ŷt − (1− −1 −1g) ḡt = (1− g) E ˆ

t [ŷt+1 − ḡt+1]− σ Rt − Etπ̂t+1
( )

− σE ˆ
t φt+1 − φ̂t

which incorporates the market clearing condition for output.

Rearranging gives:

[ ] [ ( )]
E − − ˆ ˆŷt = tŷt+1 σ (1 g) Rt − Etπ̂t+1 + E ˆ

t ḡt − ḡt+1 − σ (1− g) φt+1 − φt

This implies that:

[ ]
ŷ − ŷ∗ + ŷ∗

(
t t = Et ŷ +1 − y∗ ∗ )

ˆ
t t t+1 + yt+1 − σ (1− g) Rt − Etπ̂t+1

[ ( )]
+ Et ḡt − ˆ ˆḡt+1 − σ (1− g) φt+1 − φt

or [ ]
− ˆx̂t = Etx̂t+1 − σ (1 g) Rt − Etπ̂t+1 − r∗t (44)

where the efficient rate of interest r∗ satisfies

[
r∗

( ( )]
t = E −1 )

ˆ ˆ
t σ−1 (1− g) y∗t+1 − y∗t + g̃t − g̃t+1 − φt+1 − φt

( )
σ(1−g)(1+ψ)Â + 1

= − ḡ
E σ 1 (1− −1g) (1− t+11+ψσ ) 1+ψσ(1− t+1g g)
t −y∗t + ḡt − ḡ( ) t+1

− E ˆ ˆ
t φt+1 φt

[
−

( ) ( )]1 + ψˆ= Et − ˆ ˆ ˆφt+1 − φt + At+1
1 + ψσ (1 g)

−A− t

ψ− Et (ḡt+1 ḡt)
1 + ψσ (1

−− g)

B The utility-based loss function

Ignoring constants, the period utility function is:


1− 1



Ut = φt 
c σ 1+ψ
t n

1
− t 

− 1 1 + ψ
σ

Markup shocks are ignored (by setting ηt = η,∀t) to simplify notation. Since cost push shocks

are independent of policy this does not affect the derivation.
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Approximating the utility from consumption to second order gives:

1− 1
σ

( ) ( )2c
φ t t c
t ≈ c1− 1 ct

σ
− c 1 c− 1 1 ct c φt φ

c1− + (45)1

−
c1−

σ σ
− −

+ t.i.p.
1− c 2σ c c φ

σ

where t.i.p. denotes ‘terms independent of policy’ (that is, functions of exogenous disturbances)

and the fact that φ = 1 in steady state is used to simplify the first two terms.

Using the second order approximation for the percentage changes in consumption implies that:

1− 1

c σ
( )

t 1− 1 1 (≈ c σ ĉt 1− σ−
)

1 ĉ2 ˆ+ t + ĉtφt + h.o.t.
1− 1 2

σ

where h.o.t. are ‘higher order terms’.

The sub-utility function for labor supply is:

1+ψφtnt n1+ψ ψn1+ψ
( )

n
+ n1+ψ t − n nt

+
− 2n n1+ψ φ

1 + ψ
≈ t

+
− φ

1 + ψ n 2 n 1 + ψ φ

+ n1+ψ nt − n φt − φ
n φ

(
≈n1+ψ nt − 2n ψn1+ψ

)
nt

+
− n

+ n1+ψ nt − n φt − φ + t.i.p.
n 2 n n φ

Using the mapping from percentage changes to log-deviations, to second order, implies that:

1+ψ [ ]
φtnt n
1 + ψ

≈ 1+ψ (1 + ψ)
n̂t + n̂2 ˆ

2 t + n̂tφt + h.o.t.

A second order approximation to the aggregate production function (40) is:

1 ˆŷt + ŷ2 1 ˆ
t = n̂ 2

t + n̂
2 2 t +Atn̂t −Dt + t.i.p.

ˆwhich uses the fact that Dt is a second-order term.

This implies that:

1+ψ [ ]
φtnt )≈ n1+ψ (1 + ψ

ŷ 2 ˆ ˆ
t + ŷ

+ ψ 2
− (1 + ψ) ŷtAt + ŷtφt

1 t − D̂t + h.o.t.+ t.i.p.

The second-order approximation to the utility function is therefore

( )
≈ c1− 1 1 (

ĉ + 1− σ−
)

U 1 ĉ2
t σ ˆ

t
2 t + ĉtφt

[ ]
− n1+ψ (1 + ψ) ˆ ˆ ˆŷt + ŷ2 (1 + ψ) ŷtA + ŷt

2 t − t φt −Dt
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The steady-state labor supply relationship is

nψ = wc−1/σ = Ac−1/σ

Steady-state market clearing is

c+ g = y = An

since steady-state price dispersion is D = 1.

This implies that

n1+ψ = (1− −1g) c1− 1
σ

so that the utility function can be written as

[ ( ) ]−1 (1+ψ)
1

ˆĉt + 1 1− σ−1 ĉ2
t + ĉ ŷ2(1

t ≈
tφt

c 2 − (1− g) ŷt1−
σ

− 2
−g) t

U (1+ψ) ˆ
t − ˆ −1+ − ŷ At (1− −1 ˆg) ŷtφt − (1− g)(1 g) Dt

The goods market clearing condition is:

ct = yt − gt

A second order approximation to the goods market clearing condition is:

1
(1

− g 1− g) ĉ + ĉ2
t

2 t = ŷt + ŷ2 + t.i.p.
2 t

These results can be used to write the approximation to utility in terms of output deviations

and price dispersion only.

First substitute for
1 1

ĉt = − c2 ŷt
t̂ + + ŷ2

2 1− g 2 (1− g) t

to give:


ŷ ( ) 

−1 ĉ2 + t ˆ+ 1 1
t ŷ2

− t + 1− σ−1
− ĉ2

t + ĉ tφt2 1 g 2(1 g) 2

U ≈ 1 1 
t c −σ  − (1 − −1 (1+ψ) 2 (1+ψ) ˆg) ŷt − ŷ +g) t (1− ŷtAt2(1 g) 

− − −1

−
ˆ −1 ˆ(1 g) ŷtφt − (1− g) Dt

c1− 1 [ ]
≈

σ 1 g ψ−D̂ 2
t

−− ˆ ˆ ˆĉ2
t − ŷt + (1− g) ĉtφt + (1 + ψ) ŷtAt − ŷ φ− t t

1 g 2σ 2

where the second line collects common terms.

Substituting for ĉ2
t gives:

c1− 1 [ ]
Ut ≈

σ ψ + σ̃−1 1−D̂t − ˆ ˆ ˆŷ2
t + ŷtḡt + (1− g) ĉ y− ˜ tφt + (1 + ψ) t̂At

2 σ
− ŷtφt

1 g

where σ̃ ≡ (1− g)σ as in the main text.
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Noting that

− ˆ − ˆ ˆ − − ˆ ˆ(1 g) ĉtφt ŷtφt = φt [(1 g) ĉt ŷt] = φt [(1− g) ĉt − (1− g) ĉt − ḡt] = −φtḡt

which is independent of policy gives:

1− 1 [ −1
]

c
Ut ≈

σ ψ + σ̃− ˆ
t − ŷ2 1D ˆ

t + ŷtḡt + (1 + ψ) ŷ− g 2 σ̃
tAt

1

The terms in ŷt can be written as:

[ ( )]
1ψ + σ̃−1 1

− 2 1 ψ + σ̃− ḡˆ ˜ŷt + ŷtḡ + (1 + ψ) ŷtAt =− ŷ2
t − t

t 2ŷ 1+ψσ
t

σ̃ ˜2 2 σ(1+ψ) ˆ+ A1+ψσ̃ t

ψ + σ̃−1 [ ]
= − ŷ2

t − 2ŷtŷ
∗

2 t

ψ + σ̃−1 [ ]
= − ŷ2

2 t − 2ŷtŷ
∗
t + (ŷ∗t ) − 22 (ŷ∗t )

ψ + σ̃−1 ψ + σ̃−1
2= − (ŷt

2
− ŷ∗t ) + (ŷ∗ 2

2 t )

ψ + σ̃−1

= − x2 +
2 t t.i.p.

Define the discounted loss function to be minimized as:

∞ ∞

L − − 1 ∑ ∑ [ ( ) ]
ˆ= 2 (1 g) c −1 βtU = βt 2D + ψ + σ̃−1 2

σ t t x̂t
t=0 t=0

ˆThe analysis of the price dispersion term Dt is standard (see, for example, Gaĺı, 2008; Harrison,

2017) so that the loss function can be written as:

∑∞ [ ](
L = βt

αη )
π̂2
t + ψ + σ̃−1 x̂2

(1
=0

− αβ) (1
t

− α) t

Normalizing the coefficient on inflation to unity implies that the loss function is:

∞ [ ] [ ]∑
= βt

(1 ∑
π̂2
t +

− ∞
αβ) (1− α) (

ψ + σ̃−
)

L 1 x̂2 = t 2 κ
β π̂ + x̂2

αη t t η t

t=0 t=0

C Time-consistent linear-quadratic policy

This appendix focuses on solving for the coefficients that describe the dependence of endogenous

variables on the debt stock (that is, Fπ̂,Fx̂,F ˆ ,F )̂. The starting point is the first order conditionsV d

derived in Section 3.1 of the main text.
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Note first that (16) and (17) imply that:

µxt = (1− χ) σ̃−1µdt (46)

and

µVt = − (1− χ)µdt (47)

Using the preceding results in the equation for µdt gives:

µd = [F + σ̃F ] (1− χ) σ̃−1 d π d d
t x̂ π̂ µt + βFπ̂µt − χβF ˆ (1− χ)µt +V E

( tµ) t+1

= [F + σ̃F ] (1− χ) σ̃−1µd + βF π̂ − β−1µd − χβF (1− χ)µdx̂ π̂ t π̂ t t V̂ t

+ Etµdt+1

Collecting terms and rearranging gives:

[ ]
1 + χβ (1− χ)F ˆ + χFπ − (1− χ) σ̃−1Fx̂ µdt = βFπ̂π̂t +V Etµdt+1 (48)

Combining (13) and (14) gives:

0 = ωx̂t − µxt + κπ̂t − κβ−1µdt

which implies that: (
ωx̂t + κπ̂t = (1− χ) σ̃−1 + κβ−

)
1 µdt (49)

or
ω

µd
κ

t = x̂t + π̂t (50)
Ξ Ξ

where

Ξ ≡ (1− χ) σ̃−1 + κβ−1 > 0 (51)

Then:

[ ] ( )ω κ
1 + χβ (1− χ)F ˆ + χFπ̂ − (1− χ) σ̃−1Fx̂ x̂t + π̂t

( V ) Ξ Ξ
ω κ

= βFπ̂π̂t + Et x̂t+1 + π̂t+1 (52)
Ξ Ξ

To solve for the ‘F ’ coefficients, ignore exogenous terms and substitute out for expectations (so,

for example, Etxt+1 = Fx̂dt = Fx̂F d̂t−1):d

( )ω κ [ ]
βFπ̂Fπ̂ + FxF F −

ˆ ˆ + π̂F ˆ = 1 + χβ (1− χ)F ˆ + χF 1
π̂ (1

Ξ d Ξ
− − χ) σ̃ Fx̂d ( )Vω κ× Fx̂ + Fπ̂

Ξ Ξ
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which implies that

[ ] ( )ω
1 + χβ (1− χ)F ˆ + π̂ − (1− χ) σ̃−1 κ

χF Fx̂ − F 2
ˆ Fx̂ + Fπ̂ = βFV d Ξ Ξ π̂ (53)

Now apply the same approach for the structural model equations, which gives the following.

R̂t = − ˆ ˆVt + χβF ˆ dtV

ˆx̂t = Fx̂dt − ˆσ̃Rt + σ̃ ˆFπ̂dt (54)

which implies that:
ˆ ˆ ˆ ˆx̂t = Fx̂dt + σ̃Vt − σ̃χβF ˆ dt + σV ˜Fπ̂dt

and hence:

Fx̂ = Fx̂F ˆ + σF ˆ σχβF ˆF ˆ + σFπ̂F ˆ (55)d ˜ V − ˜ V d ˜ d

The Phillips curve implies that:
ˆπ̂t = κx̂t + βFπ̂dt

so that:

Fπ̂ = κFx̂ + βFπ̂F ˆ (56)d

The government debt accumulation equation gives:

ˆ ˆ ˆdt = β−1dt−1 − β−1π̂t − (1− χ)Vt

which implies that:

F ˆ = β−1
d − β−1Fπ̂ − (1− χ)F ˆ (57)V

The preceding steps have delivered four equations in four unknowns, repeated here for conve-

nience:

[ ]
βF 2

π̂ = 1 + χβ (1− χ)F ˆ + χFπ̂V − (1− χ) σ̃−1F
( ) x̂ − Fd̂
ω κ× Fx̂ + Fπ̂ (58)
Ξ Ξ

Fx̂ = Fx̂F ˆ + σd ˜FV̂ − σ̃χβF ˆF ˆ + σV d ˜Fπ̂F ˆ (59)d

Fπ̂ = κFx̂ + βFπ̂F ˆ (60)d

F 1
ˆ = β−1 − β− Fπ̂ − (1− χ)F ˆ (61)d V

The final two equations can be used to express Fx̂ and F ˆ as functions of Fπ̂ and F :̂V d

Fx̂ = κ−1Fπ̂ − κ−1βFπ̂F ˆ (62)d

−1 −1 −1F ˆ = (1− χ) β−1 − (1− χ) β−1Fπ̂ − (1 χ) F ˆ (63)V − d
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Using these expressions in the first two equations gives:

[
−1 ( ) ]

1 + χβ (1− χ) (1− χ) −1
2 β − β−1Fπ̂

βFˆ

− F ˆ + χFπ̂
= d

π ( )
− (1− χ) σ̃−1 κ−1Fπ̂ − κ−1βFπ̂Fd̂ − F( d̂

ω ( ) )
× κ−1Fπ̂ − κ−1 κ

βFπ̂F ˆ + Fπ̂
[ Ξ d Ξ ]

− − − ˜ −1 ( )
= 1 + χ χβF ˆ (1 χ) (κσ) 1− βF ˆ Fπ̂ − F ˆ

( d d d

ω ( ) )κ× 1− βF ˆ + Fπ̂
Ξκ d Ξ

and

κ−
( ) ( )

1Fπ̂ 1− βF ˆ = κ−1Fπ̂ 1− βF ˆ F ˆ + σd d d ˜Fπ̂F( d̂ )
−1 −1 −1+ σ̃ (1− χ) β−1 − (1− χ) β−1Fπ̂ − (1− χ) Fd̂

( )
× 1− βχFd̂

The second equation implies a quadratic equation for F ˆ conditional on a solution (or conjecture)d

for Fπ̂. The first equation can be used to solve for Fπ̂ conditional on a solution (or conjecture) for

F .̂d
Specifically, conditional on a solution for F ,̂ Fπ̂ satisfies:d

( ) 1 + χ (1 + βχ)F
Fπ̂ = m Fd̂ ≡ ( ( ) )

− d̂ ( (64)
β ω 1 )

1− βF ˆ + κ −1
+ (1− −χ) (κσ) 1κΞ d Ξ ˜ − βFd̂

The quadratic equation for F ˆ is given by:d

[ ] [ ]
βχκσ̃ 2 κσ̃ χκσ̃

0 = − βFπ̂ F ˆ + Fπ̂ (1 + β + κσ̃)− − (1− Fπ̂) F
1− ˆ

χ d 1− χ (1− χ) d

[ ]
κσ̃

+ (1− F )− π̂ − Fπ̂
β (1 χ)

which can be rearranged to give:

[ ] [ ]
χκσ̃ 2 χκσ̃

0 = Fπ̂ βF ˆ + F− π̂
1 χ

−
d

− F ˆ
(1[ − χ) d

]
κσ̃ χκσ̃

+ Fπ̂ (β + κσ̃)− + F
1− χ (1− π̂ F ˆ

χ) d

[ ]
κσ̃

+ (1
β (1− χ)

− Fπ̂)− Fπ̂
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The third term can be written as:

[ ]
κσ̃ χκσ̃

Fπ̂ (β + κσ̃)− + F
1− χ (1− π̂ F ˆ

χ) d

[ ]
(1 σ

= βFπ̂
− χ)κσ̃ κ˜ χκσ̃

+ F− π̂ +
χ

− F
1− π

χ (1− ˆ F ˆ
1 χ) d

[ ]
κσ̃

= βFπ̂ + (Fπ̂ − 1) F
1− ˆ

χ d

[ ]
κσ̃

= − (1− F− π̂)− Fπ̂ βF ˆ (65)
1 χ d

This implies that the quadratic equation can be factorized as:

[ ] [ ]
χκσ̃ ( ) κσ̃ ( )

0 = Fπ̂ − F ˆ 1 βF ˆ + (1 Fπ̂) Fπ̂ 1 βF ˆ
1 d −− χ d β (1 χ)

− − − d

[( ) − ]( ) χκσ̃ κσ̃
= 1− βF ˆ Fπ̂d − F + (1 F ) F

1− ˆ π̂ π̂
χ d β (1

−− χ)
−

( ) ( )
So one solution is F ˆ = β−1. That implies that F −1 κ −1

π̂ = m β = 1d Ξβ − β < 0.

The other solution for F ˆ satisfies:d

( )
−1 −11 + κσ̃ [β (1 χ)] Fπ̂ κσ̃ [β (1 χ)]

F ˆ≡ h (Fπ̂) =
− − −

(66)d Fπ̂ − σ̃ (1− −1χκ χ)

Note that h can be written as:

−κσ̃ 1[β (1 χ)] (Fπ̂ 1 + βχ)
h (·) = 1 +

− −
−1Fπ̂ − χκσ̃ (1− χ)

The previous results can be used to re-write the targeting rule in terms of the output gap and

inflation.

C.1 Model properties under time-consistent policy

The coefficient in brackets on the left side of (52) is:

Ω ≡ 1 + χβ (1− χ)F 1
ˆ + χF −

π̂ − (1− χ) σ̃ Fx̂
( V ) ( )

= 1 + χ 1− Fπ̂ − βF ˆ + χF −
π̂ − (1− χ) σ̃ 1 κ−1Fπ̂ − κ−1βFπ̂F ˆd d

1 χ 1 χ
=1 + χ− χβFd̂

−
F

κ˜ π̂ +
−− βF

σ κσ̃
π̂Fd̂

Rearranging (66) reveals that:

( )
χκσ̃ κσ̃ κσ̃

F ˆFπ̂ = F + 1 + Fd 1− d̂ β (1− π̂
χ χ)

−
β (1− χ)

39



so that ( )
1− χ 1 χ

βF˜ π̂F ˆ = χβF ˆ + 1 + β
−

F˜ π̂
κσ d d κσ

− 1

and plugging this into the equation for Ω gives:

( )
1

Ω = χ+ Fπ̂ 1− (1 β)
− χ−
κσ̃

This allows (48) to be written as

µdt = βFπ̂Ω−1π̂ −1 d
t + Ω Etµt+1

and (52) to be written as:

Ω (ωx̂t + κπ̂t) = βΞFπ̂π̂t + Et (ωx̂t+1 + κπ̂t+1)

or ( )
ωx̂t + κ− βΞFπ̂Ω−1 π̂t = Ω−1Et (ωx̂t+1 + κπ̂t+1)

When cost-push shocks are zero, the Phillips curve implies that the output gap satisfies:

x̂t = κ−1 (π̂t − βEtπ̂t+1)

Which implies that the targeting rule can be written as:

(
Ω ωκ−

) ( )
1 (π̂t − βEtπ̂t+1) + κπ̂t = βΞFππ̂t + Et ωκ−1

ˆ (π̂t+1 − βEtπ̂t+2) + κπ̂t+1

which uses the law of iterated conditional expectations.

Collecting terms and rearranging gives a second order difference equation for inflation:

[ ( ) ] [ ]ω ω βω
Ω + κ

κ
− βΞFπ π̂t − (1 + βΩ) + κ Etπ̂t+1 + Etπ̂t+2 = 0

κ κ

For an impulse response, in which an unexpected shock is revealed in period 1 and no additional

information arrives thereafter, the path for inflation must satisfy the difference equation. That is

[ ( ) ] [ ]ω ω βω
Ω + κ − βΞFπ π̂t − (1 + βΩ) + κ π̂t+1 + π̂t+2 = 0

κ κ κ

where the expectation operator has been removed.

We seek a solution of the form πt+1 = Gπt which implies

([ ( ) ] [ ] )
ω ω βω

Ω + κ − βΞFπ − (1 + βΩ) + κ G+ G2 π̂t = 0
κ κ κ
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The roots of the characteristic polynominal satisfy:

([ ] [ ( ) ] ) 1

ω 2
+ βΩ) + ± ω β(1 (1 + βΩ) + κ − ωκ 4 Ω ω + κκ − βΞF

2

κ κ π̂ κ
G = (67)

βω2 κ

For the parameter values used in both the baseline and long-duration variants, the two solutions

for G are real. In both cases, the larger root exceeds 1 and the smaller root is less than 1.

The preceding analysis has shown that, in the absence of cost push shocks, the path for inflation

satisfies:

π̂t+1 = Gπ̂t, t ≥ 1

The Phillips curve implies that:

x̂t+1 = κ−1 (π̂t+1 − βπ̂ −1
t+2) = κ (1− βG) π̂t+1

and substituting this into (50) evaluated at t+ 1 gives:

[ ]
µd

ω κ
t+1 = (1− βG) + π̂t+1

κΞ Ξ

Also note that, for t > 1:

x̂t+2 =κ−1 (1− βG) π̂ −
t+2 = κ 1 (1− βG)Gπ̂

[ ] [ t+1 = Gx̂t+1]
µd

ω κ ω κ
t+2 = (1− βG) + π̂t+2 = (1− βG) + Gπ̂t+1 = Gµd

κΞ Ξ κΞ Ξ t+1

The preceding results can be used in (48) evaluated at t+ 1 to give:

[ ]
1 + χβ (1− χ)FV̂ µdt+1 = βFπ̂π̂t+1 + µd

+χFπ − (1− χ) σ̃−
t+21Fx̂

[ ]ω κ −1
=βF d d

π̂ (1− βG) + µ
κΞ Ξ t+1 +Gµt+1

which implies that the coefficients satisfy:

[ ]ω κ −1
1 + χβ (1− χ)F ˆ + χF − (1− ) σ̃−1

π χ Fx̂ = βFπ̂ (1V − βG) + +G
κΞ Ξ

Using the solutions for Fx̂ and F ˆ ((62) and (63)) in the left hand side and collecting termsV

gives:
( ) ( ) [ ]1

1 + χ 1− βF ˆ
− χ ω κ −1

− F 1 βF = βF (1 βG) + +Gd σ̃
π̂

κ
− ˆ π̂d κΞ

−
Ξ

which implies that: ( )
1 + χ 1

Fπ̂ =
− βFd̂ −G[ ]

β ω − )
(1− 1 (

βG) + κ + 1−χ 1 βFκΞ Ξ σ̃κ − d̂
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Equating this to the solution for Fπ in (64) gives:

( )
1 + χ 1− βFd̂ −G[ ]

β ω (1− −1 ( )
βG) + κ + 1−χ 1κ Ξ σ̃κ − βFΞ d̂

1 + χ
( ˆ

=
− (1 + βχ)F

( ) ) d ( )
β ω 1− 1βF ˆ + κ −1 −+ (1 1Ξ d Ξ − χ) (κσ̃) − βFκ d̂

which reveals that

G = Fd̂

D Global analysis of stable roots under time-consistent policy

0 1 2

F

-6

-4

-2

0

2

4

6

F
d

=0.945

0 5 10

F

-6

-4

-2

0

2

4

6

F
d

=0.976

-0.5 0 0.5

F

-6

-4

-2

0

2

4

6

F
d

=0.5

Figure 9: Global analysis of Fπ̂ and Fd̂
Notes: Each panel plots the functions m and h defined by equations (19) (dashed blue line) and (20) (solid red line)
respectively. Each panel examines a variant of the model for alternative values f χ: the baseline model (χ = 0.945),
the long-duration debt variant (χ = 0.976) and a variant with very short debt duration (χ = 0.5).

Figure 9 presents an analysis of the h and m functions (solid red and dashed blue lines respec-

tively) over a broader range for Fπ̂ and F ˆ than considered in the main text. This demonstratesd

that, conditional on the values of the other model parameters, the stable Markov perfect equilibria

are unique for the baseline and long duration values of χ as well as for a case in which the du-

ration of bonds is very short (χ = 0.5). In the very short duration case, Fd̂ ≈ 0 which suggests

that the ‘debt stabilization bias’ is significant in this case, consistent with the results of Leith and

Wren-Lewis (2013) who analyze a model with one period debt (χ = 0).

E Solution of the model accounting for the lower bound

This appendix details the solution of the model when the presence of the zero lower bound is

accounted for. The algorithm is presented in subsection E.6, with preceding subsections defining

notation and deriving key ingredients required for the solution.
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E.1 First order conditions

The constrained loss minimization problem is:

1 [ ]
min π̂2 2

2 t + ωx̂t
[ ( )]

− µxt x̂t − E x̂t+1 + σ (1− ˆg) Rt − Etπ̂t+1 − r∗t t

− µπt [π̂t − κx̂t − βEtπ̂t+1 − ut][ ( ) ]
− d ˆ − −1 ˆ ˆµt dt β dt−1 − π̂t + (1− χ)Vt − ζ−1ḡt

[ ]
− V ˆ ˆ − ˆµt Vt +Rt χβVt+1

[ ]
− µZ ˆ

t R −1
t − β + 1

+ βE ˜
tLt+1

where µZ is the Lagrange multiplier on the zero bound constraint.

The first order conditions are:

0 = π̂t − µπt − β−1µdt (68)

0 = ωx̂t − µxt + κµπt (69)
[ ]

x ∂Etx̂t+1 ∂Etπ̂t+1 E
0 = µt + σ (1 g) βµπ

∂ tπ̂t+1
+

ˆ ˆ t ˆ∂dt
−

∂dt ∂dt

d ∂E ˆ
V tV ˜

− t+1 ∂Et
µt + χβµt + β

Lt+1
(70)

ˆ ˆ∂dt ∂dt

0 = − (1− χ)µd V
t − µt (71)

0 = − σ (1− g)µx − µV Z
t t − µt (72)

( )
0 = µZ R̂t − β−1

t + 1 (73)

where (73) is the contemporary slackness condition.

Applying the envelope condition implies that (70) can be written as:

[ ]
x ∂Etx̂t+1 ∂Etπ̂t+1 π ∂Etπ̂0 = µt + σ (1

ˆ∂dt
− t+1
g) + βµ

ˆ t ˆ∂dt ∂dt

E ˆ∂ V− µV
t

µd
t+1

t + χβ t + E
ˆ tµ

d
t+1

∂dt

The policy function iteration technique has the following basic structure (the full algorithm

is described below). First, outcomes for each element of the state space are solved, conditional

on guesses for expectations and the derivatives of expectations with respect to debt. Then these

outcomes are used to form a guess for the policy functions. Those guesses are then used to update

the estimates of expectations and the derivatives of those expectations with respect to government
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debt. This process continues until the policy functions converge.

E.2 Conditional solutions

To simplify notation, the following conventions are adopted. Time subscripts are removed, with a

prime used to denote outcomes in the following period. Then For variable z, let partial derivatives

be represented as:
∂Ez′Dz ≡ (74)

ˆ∂d

Consider first the solution under the assumption that the lower bound does not bind. We can

stack the equations characterizing the equilibrium to give:

  
0 1 σ̃ 0 0 0 0 0 0 0 π̂

   1 κ 0 0 0 0 0 0 0 0  x̂   ˆβ−1

−
0 0 1 0 0 0 0 0   − χ 1 R  ˆ 0 0 1 1 0 0 0 0 0 0   V    1 0 0 0 0 −β−1 −1 0 0 0  d̂′     0 ω 0 0 0 0 κ


−1 0 0  µd  π  0 0 0 0 0 1 − βDπ̂ Dx̂ + σ̃Dπ̂ χβD ˆ 0V  µ   0 0 0 0 0 − (1− χ) 0 0 −1 0   µx   0 0 0 0 0 0 0 −σ̃ −1 −1  µV 

0 0 0 0 0 0 0 0 0 1 µZ
︸ ︷︷ ︸ ︸ ︷︷ ︸
  M z

Ex̂′ + σ̃Eπ̂′ + σ̃r∗
   βEπ̂′ + u  β−1 ˆ d  χβEV̂ ′

   0 
=   (75)  0  −Eµd′   0   0 

0
︸ ︷︷ ︸

C

which can be solved for the vector of endogenous variables and Lagrange multipliers as:

z = M−1C
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In the case in which the zero bound does bind we have:

  
0 1 σ̃ 0 0 0 0 0 0 0 π̂

   1 −κ 0 0 0 0 0 0 0 0   x̂  − β 1 0 0 1− χ 1 0 0 0 0 0  R̂    0 0 1 0 0 0 0 0 0  ˆ  1  V    1 0 0 0 0 −β−1 −1 0 0 0  d̂′     0 ω 0 0 0 0 κ


−1 0 0  d  µ   0 0 0 0 0 1 βD D + σ̃ π

 − π̂ x̂ Dπ̂ χβD ˆ 0  µV   0 0 0 0 0 − (1− χ) 0 0 1 0  µx
−    0 0 0 0 0 0 0 −σ̃ −1 −1  µV 

0 0 1 0 0 0 0 0 0 0 µZ
︸ ︷︷ ︸ ︸ ︷︷ ︸

M̃ z
 

Ex̂′ + σ̃Eπ̂′ + σ̃r∗
 βEπ̂′


+ u   ˆβ−1d    χβEV̂ ′   0 

=   (76) 0   d′ Eµ  −   0   0 
1− β−1

︸ ︷︷ ︸
C̃

which can be solved for the vector of endogenous variables and Lagrange multipliers as:

z = M̃−1C̃

Note that the differences between M and M̃ and between C and C̃ are isolated to the bottom

row of each matrix.

E.3 State space and policy functions: notation

The description of the algorithm can be simplified by introducing some notation for the key objects

that will be solved for.

The vector of endogenous variables are denoted by z, defined implicitly above, but explicitly
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here:  
π̂

  x̂   R̂   ˆ  V   d̂′ 
z ≡   µd   µπ   µx  µV 

µZ

The exogenous states are denoted s:

[ ]
r∗

s ≡
u

and full state vector for relevant policy functions is, s̃:

[ ]
s

s̃ ≡
d̂

The exogenous state is defined as a set of fixed values for the cost push shock and natural rate.{ }
Specifically, Sr ≡ r∗1 . . . r∗nr and Su ≡ {u1 . . . unu}. The transition matrices for the Markov

processes are Ωr and Ωu.

The combined (exogenous) state-space is given by S = Su
24

× Sr with transition{ matrix} Ω =

Ωr ⊗ ˆΩu. The endogenous state is d, which is discretized on a Sd ≡ ˆ ˆgrid d1 . . . dnd , with

ˆ ˆdi > di−1, i = 2, . . . , nd. The endogenous state is assumed to be ordered last. So the full state

˜space is giv{ en by S}= S × S .25 ˜
d Thus, S is a ns̃ × 3 matrix, where ns̃ ≡ ns × nd. The index of the

ˆ ˜element ui, r
∗
j , dk ∈ S is (k − 1)× ns + (j − 1)× nu + i.

This implies that the combined state can be written as:

 
ˆS d 11ns . .

S̃ =  . . . . 
ˆS dnd1ns

where 1ns is a ns × 1 unit vector.

This representation of the state space is useful for subsequent computations since approximation

of expectations requires interpolation between grid points for the endogenous state, while integrat-

24The first nu elements of the state space are {u1, r
∗
1} , . . . , {un{u , r∗ u ∗

1}, follo}wed b{y { 1, r2} , . .}. , {unu , r
∗
2} and so on.

25 ˆ ˆThus the first ns ≡ nu×nr elements are given by the triples u , r∗, d , . . . , u , r∗ , d , the next n elements{ } { } 1 1 1 nu nr 1 s

ˆ ˆare u1, r
∗
1 , d2 , . . . , unu , r

∗
nr
, d2 and so on.

46



ing across the exogenous state S. Similar methods are used for the estimation of derivatives of

expectations.

The objects of interest are policy functions. These are ns̃ × nz matrices. Let a generic policy

function be denoted f .

E.4 Expectations

It is useful to define an ‘expectation’ operator that integrates out exogenous state uncertainty but

holds the endogenous state vector constant:

 
Ω 0 . . . 0 0

  0 Ω . . . 0 0 
. .E f ≡ ¯S  . . 

S f ≡  . . . .
 . . . . . . .  f  0 0 . . . Ω 0 

0 0 . . . 0 Ω

so that the ‘bar’ is used as a summary notation for expectations and the S superscript indicates

that the expectation is computed with respect to the exogenous state variables only.
ˆTo compute the actual expectation requires conditioning on the solution for d′ at the particular

point in the state space. This can be done as follows.

• Extract the relevant column of f that corresponds to debt. Let this column vector be denoted
ˆd. The elements of this vector denote the solutions d′ ∈ z for each state 1, . . . , ns̃.

• Let the elements of d be denoted dk, k = 1, . . . , ns̃. Let the exogenous state corresponding to

this solution be S<k>. For each k, perform the following:

– Compute the indices in Sd that bracket this element.26 This gives two indices i1, i2 ∈ Sd
with 1 ≤ i1 < i2 (= i1 + 1) ≤ nd .

– Compute the weights that should apply to each of these gridpoints (using linear inter-
dpolation). This gives φ1 = k−Sd(i1)
− and φ2 = 1− φ1.Sd(i2) Sd(i1)

˜ ˜– Compute the indices of the elements of S corresponding to the elements in S for which

(a) S = S<k> and (b) Sd = Sd (i1) and Sd = Sd (i2). Denote these indices as ĩ1 and ĩ2.

– Estimate the expectation using linear interpolation as:

f̄k,· = φ ¯
1f

S
˜ + φ ¯

2f
S

i1,· ĩ2,·

where the subscript ‘j, ·’ denotes the j-th row of a matrix.

The penultimate step (finding ĩ1 and ĩ2) can be aided by a pre-computation operation. To

see this, recall that for each k ∈ {1, . . . , ns̃}, there is an exogenous state, S<k>. The indices

26Extrapolation is conceptually identical, but for the purposes of exposition, I assume that interpolation is required.
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ˆcorresponding to different values of d for the same value of S<k> are multiples of ns away from

from k. This allows us to form a ns̃ × nd matrix of indices – a ‘lookup matrix’, denoted Λ – as

follows.

For each k ∈ {1, . . . , ns̃}

• ˆ ˆCompute j, defined as the index of the grid point d′k within Sp. Recall that d′ is the final

(third) state.

• For m = 1, . . . , ns, form the k-th row of Λ as:

Λk,m = k − (j −m)ns

Then, in the computation of expectations, for each k the indices are found by setting ĩ1 = Λk,i1
and ĩ2 = Λk,i2 .

E.5 Derivatives

The first order conditions depend on derivatives of expectations of the policy functions. To ap-

proximate these derivatives, a two-sided finite difference approach is used. The derivatives are

computed in two steps. In the first step, two-sided finite difference derivatives of the static expec-
ˆtations are computed, using adjacent gridpoints for d. In the second step, linear interpolation is

used to approximate the derivatives at the relevant values of d.

The first step is to approximate the derivative of the static expectation function f̄S. We seek

the finite difference approximation to the derivative of f̄S for each row m ={1, . . . , ns̃. First} note
ˆ ˆthat Sd is assumed to be formed of an evenly-spaced grid of values: Sd = d1 . . . dnd , with

ˆ ˆdi+1 = di + hd. So the difference between each grid point is hd.
ˆConsider an m for which the corresponding element of Sd is di with 1 < i < nd, that is, an

interior point. Then the ‘static derivative’ at point m is given by:

DS 1 ( )
m,· = f̄S ¯S

2h m+ns,·
d

− fm−ns,·

Now consider the endpoints. For 1 ≤ m ≤ ns, i = 1 and a one-sided difference is used:

DS 1 ( )
¯S ¯S

m,· = f
h m+ns,· − fm,·
d

Similarly, for ns̃ − ns + 1 ≤ m ≤ ns̃, i = nd and the one-sided approximation is given by:

DS 1 ( )
¯S ¯S

m,· = f
h m,· − fm−ns,·
d

The second step is to form an estimate of the derivative at d using linear interpolation. This

step is set out in the description of the algorithm below.
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E.6 Algorithm

The objective of the algorithm is to solve for the policy function f by iterating directly on it.

1. Initialize a guess, f<0>, for the policy function f .

2. Build the ‘lookup matrix’, Λ, as described above.

3. For each iteration j = 1, . . .

Update expectations

(a) Update the guess for ‘static’ expectations. As described above, this integrates out ex-

ogenous state uncertainty but holds the endogenous state vector constant:

 
Ω 0 . . . 0 0

  0 Ω . . . 0 0 
f̄S<j>  . . . . 

=  . . . . <j−1>
 . . . . . . .  f  0 0 . . . Ω 0 

0 0 . . . 0 Ω

˜(b) Extract the vector of d′ values, d<j−1> as the relevant column of f<j−1>.

(c) Compute the indices and weights of the elements of Sp that bracket the values in d<j−1>.

Use the lookup matrix Λ to convert these into ns̃ × 2 matrices of indicators and inter-

polation/extrapolation weights, denoted Υ and Φ respectively.

(d) For each m = 1, . . . , ns̃: Compute expectations by extracting interpolation indices

˜[ι1 ι2] = Υm and weights [φ1 φ2] = Φm. Translate the interpolation weights into S

space by setting ι̃1 = Λm,ι1 and ι̃2 = Λm,ι2 . Now set

¯ ¯S<j> ¯S<j>fm,· = φ1f + φι̃ 2f1,· ι̃2,·

Update the estimate of the derivative of expectations

(e) Update the estimate of the ‘static’ derivatives, DS, as described in E.5.

(f) Compute the derivatives prevailing at d by linear interpolation. For each m = 1, . . . , ns̃,

set:

Dm,· = φ1D
S S
ι̃1,· + φ2Dι̃2,·

where the indices ι̃1, ι̃2 and weights φ1, φ2 are the same as in step 3d.

Update the guess for the policy function

(g) For each m = 1, . . . , ns̃:

i. Extract latest guesses for expectations and their derivatives:

Ez′ = f̄m,· D = Dm,·
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ii. Assume that the zero bound does not bind. Form M and C using Ez′ and D and

solve the system (75) as z = M−1C.

iii. Check whether this solution is indeed consistent with a positive interest rate by

checking whether the relevant element of z exceeds the zero bound. If it does,

proceed to step 3(g)v, otherwise proceed to step 3(g)iv.

iv. Compute the solution imposing the lower bound. Form M̃ and C̃ using Ez′ and D
and solving (76) as z = M̃−1C̃.

v. Load the solutions into the latest guess for the policy function:

f<j>
m,· = z

∣ ∣
4. Check for convergence. If ∣f<j> − f<j−1>∣ < ε, set f = f<j> and stop, otherwise set j = j+ 1

and return to step 3.

E.7 Practical implementation

Solutions for the policy functions were found using a heuristic iterative procedure. Before finding

the solution, the equilibrium distribution of the endogenous state variable is unknown. So some
ˆ ˆiterative experimentation with the end points of the grid (ie d1 and dnd) was required to ensure

that the policy functions did not require extrapolation beyond these points.

Similarly, some experimentation was required to choose the increment hd between grid points
ˆfor d in way that provided a balance between computational efficiency and accurate computation

of the derivatives of expected policy functions. In practice, the model was solved on a coarse grid
ˆfor d and the resulting solution used to produce a guess (using linear interpolation) for the policy

function on a finer grid.
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